Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(9): 6893-900, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26879071

ABSTRACT

Electrochemical cycling stabilities were compared for undoped and Al/Co dual-doped spinel LiMn2O4 synthesized by solid state reactions. We observed the suppression of particle fracture in Al/Co dual-doped LiMn2O4 during charge/discharge cycling and its distinguishable particle morphology with respect to the undoped material. Systematic first-principles calculations were performed on undoped, Al or Co single-doped, and Al/Co dual-doped LiMn2O4 to investigate their structural differences at the atomistic level. We reveal that while Jahn-Teller distortion associated with the Mn(3+)O6 octahedron is the origin of the lattice strain, the networking -i.e. the distribution of mixed valence Mn ions - is much more important to release the lattice strain, and thus to alleviating particle cracking. The calculations showed that the lattice mismatching between Li(+) intercalation and deintercalation of LiMn2O4 can be significantly reduced by dual-doping, and therefore also the volumetric shrinkage during delithiation. This may account for the near disappearance of cracks on the surface of Al/Co-LiMn2O4 after 350 cycles, while some obvious cracks have developed in undoped LiMn2O4 at similar particle size even after 50 cycles. Correspondingly, Al/Co dual-doped LiMn2O4 showed a good cycling stability with a capacity retention of 84.1% after 350 cycles at a rate of 1C, 8% higher than the undoped phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...