Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(27): eadl2142, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968346

ABSTRACT

The impact of anthropogenic global warming on tropical cyclone (TC) frequency remains a challenging issue, partly due to a relatively short period of reliable observational TC records and inconsistencies in climate model simulations. Using TC detection from 20 CMIP6 historical simulations, we show that the majority (75%) of these models show a decrease in global-scale TC frequency from 1850 to 2014. We demonstrated that this result is largely explained by weakened mid-tropospheric upward motion in CMIP6 models over the Pacific and Atlantic main development regions. The reduced upward motion is due to a zonal circulation adjustment and shifts in Intertropical Convergence Zone in response to global warming. In the South Indian Ocean, reduced TC frequency is mainly due to the decreased survival rate of TC seeds because of an increased saturation deficit in a warming climate. Our analysis highlights global warming's potential impact on the historical decrease in global TC frequency.

2.
Natl Sci Rev ; 11(4): nwae063, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623453

ABSTRACT

The Chinese Bayan Obo deposit is a world-class rare earth element (REE) deposit with considerable niobium (Nb) and iron (Fe) resources. A complete genetic understanding on all metals is fundamental for establishing genetic models at Bayan Obo. With extensive research being focused on REE enrichment, the timing and controls of Nb enrichment remain unresolved at Bayan Obo, which is mainly due to the challenges in dating, i.e. multistage thermal events, fine-grained minerals with complex textures and the rare occurrence of uranium-enriched minerals with mature dating methods. Based on robust geological and petrographic frameworks, here we conducted ion probe uranium-lead (U-Pb) dating of ferrocolumbite to unravel the timing, hence the genesis of Nb mineralization. Three types of hydrothermal ferrocolumbites-key Nb-bearing minerals-are identified based on their textures and mineral assemblages. They yield U-Pb ages of 1312 ± 47 Ma (n = 99), 438 ± 7 Ma (n = 93), and 268 ± 5 Ma (n = 19), respectively. In line with deposit geology, we tentatively link the first, second and third stage Nb mineralization to Mesoproterozoic carbonatite magmatism, ubiquitous early Paleozoic hydrothermal activity, and Permian granitic magmatism, respectively. While quantifying the contribution of metal endowment from each stage requires further investigation, our new dates highlight that multi-stage mineralization is critical for Nb enrichment at Bayan Obo, which may also have implications for the enrichment mechanism of Nb in REE deposits in general.

3.
Environ Pollut ; 348: 123813, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537801

ABSTRACT

The removal of trace amounts of antibiotics from water environments while simultaneously avoiding potential environmental hazards during the treatment is still a challenge. In this work, green, harmless, and novel asymmetric mesoporous TiO2 (A-mTiO2) was combined with peroxodisulfate (PDS) as active components in a controlled-release material (CRM) system for the degradation of tetracycline (TC) in the dark. The formation of reactive oxygen species (ROS) and the degradation pathways of TC during catalytic PDS activation by A-mTiO2 powder catalysts and the CRMs were thoroughly studied. Due to its asymmetric mesoporous structure, there were abundant Ti3+/Ti4+ couples and oxygen vacancies in A-mTiO2, resulting in excellent activity in the activation of PDS for TC degradation, with a mineralization rate of 78.6%. In CRMs, ROS could first form during PDS activation by A-mTiO2 and subsequently dissolve from the CRMs to degrade TC in groundwater. Due to the excellent performance and good stability of A-mTiO2, the resulting constructed CRMs could effectively degrade TC in simulated groundwater over a long period (more than 20 days). From electron paramagnetic resonance analysis and TC degradation experiments, it was interesting to find that the ROS formed during PDS activation by A-mTiO2 powder catalysts and CRMs were different, but the degradation pathways for TC were indeed similar in the two systems. In PDS activation by A-mTiO2, besides the free hydroxyl radical (·OH), singlet oxygen (1O2) worked as a major ROS participating in TC degradation. For CRMs, the immobilization of A-mTiO2 inside CRMs made it difficult to capture superoxide radicals (·O2-), and continuously generate 1O2. In addition, the formation of sulfate radicals (·SO4-), and ·OH during the release process of CRMs was consistent with PDS activation by the A-mTiO2 powder catalyst. The eco-friendly CRMs had a promising potential for practical application in the remediation of organic pollutants from groundwater.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Reactive Oxygen Species , Delayed-Action Preparations , Powders , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry
4.
Sensors (Basel) ; 23(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896664

ABSTRACT

Energy management methods (EMMs) utilizing sensing, communication, and networking technologies appear to be one of the most promising directions for energy saving and environmental protection of fuel cell vehicles (FCVs). In real-world driving situations, EMMs based on driving cycle information are critical for FCVs and have been extensively studied. The collection and processing of driving cycle information is a fundamental and critical work that cannot be separated from sensors, global positioning system (GPS), vehicle-to-vehicle (V2V), vehicle-to-everything (V2X), intelligent transportation system (ITS) and some processing algorithms. However, no reviews have comprehensively summarized the EMMs for FCVs from the perspective of driving cycle information. Motivated by the literature gap, this paper provides a state-of-the-art understanding of EMMs for FCVs from the perspective of driving cycle information, including a detailed description for driving cycle information analysis, and a comprehensive summary of the latest EMMs for FCVs, with a focus on EMMs based on driving pattern recognition (DPR) and driving characteristic prediction (DCP). Based on the above analysis, an in-depth presentation of the highlights and prospects is provided for the realization of high-performance EMMs for FCVs in real-world driving situations. This paper aims at helping the relevant researchers develop suitable and efficient EMMs for FCVs using driving cycle information.

5.
Sci Total Environ ; 846: 157217, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35810910

ABSTRACT

Controlled release materials (CRMs) are an emerging oxidant delivery technique for in-situ chemical oxidation (ISCO) that solve the problems of contaminant rebound, backflow and wake during groundwater remediation. CRMs were fabricated using ordered mesoporous manganese oxide (O-MnOx) and sodium persulfate (Na2S2O8) as active components, for the removal of antibiotic pollutants from groundwater. In both static and dynamic groundwater environments, persulfate can first be activated by O-MnOx within CRMs to form sulfate radicals and hydroxyl radicals, with these radicals subsequently dissolving out from the CRMs and degrading tetracycline (TC). Due to their excellent persulfate activation performance and good stability, the constructed CRMs could effectively degrade TC in both static and dynamic simulated groundwater systems over a long period (>21 days). The TC removal rate reached >80 %. Changing the added content of O-MnOx and persulfate could effectively regulate the performance of the CRMs during TC degradation in groundwater. The process and products of TC degradation in the dynamic groundwater system were the same as in the static groundwater system. Due to the strong oxidizing properties of sulfate radicals and hydroxyl radicals, TC molecules were completely mineralized within the groundwater systems, resulting in only trace levels of degradation products being detectable, with low- or non-toxicity. Therefore, the CRMs constructed in this study exhibited good potential for practical application in the remediation of organic pollutants from both static and dynamic groundwater environments.


Subject(s)
Groundwater , Water Pollutants, Chemical , Anti-Bacterial Agents , Delayed-Action Preparations , Groundwater/chemistry , Hydroxyl Radical , Oxidation-Reduction , Sulfates/chemistry , Tetracycline , Water Pollutants, Chemical/analysis
6.
Sci Rep ; 12(1): 863, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039585

ABSTRACT

Affected by frequency, amplitude and some other factors, the dynamic mechanical properties of rubber bushing are nonlinear. In order to study the frequency dependence of the rubber bushing, a BP neural network optimized by genetic algorithm (GA-BP neural network) is applied to predict the dynamic stiffness and loss factor under frequency of 61-100 Hz. The training data refers to the test data under frequency of 1-60 Hz. And the algorithm is demonstrated by the elastomer test of rubber bushing under amplitudes 0.2 mm, 0.4 mm and 0.6 mm. The results show that the prediction error of dynamic stiffness is less than 1%, and the prediction error of loss factor is less than 3%. In order to apply the predicted results to the software for simulation, a five-parameter mathematical model (FPM) consisting of three elastic elements and two damping elements is developed, and the model parameters are identified by least squares method. According to the fitting results and test data, the fitting error of dynamic stiffness is less than 2%, and the fitting error of loss factor is less than 3%. The GA-BP neural network and FPM model predict the dynamic mechanical behaviour of rubber bushing without the performance of iterative experiments and the incurrence of a high computational cost, making it applicable to analyze full-size vehicles with numerous rubber bushings under various vibration load conditions.

8.
Nat Commun ; 12(1): 6787, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34811375

ABSTRACT

How anthropogenic forcing could change tropical cyclones (TCs) is a keen societal concern owing to its significant socio-economic impacts. However, a global picture of the anthropogenic aerosol effect on TCs has not yet emerged. Here we show that anthropogenic aerosol emission can reduce northern hemisphere (NH) TCs but increase southern hemisphere (SH) TCs primarily through altering vertical wind shear and mid-tropospheric upward motion in the TC formation zones. These circulation changes are driven by anthropogenic aerosol-induced NH-cooler-than-SH and NH-increased versus SH-decreased meridional (equator to mid-latitudes) temperature gradients. The cooler NH produces a low-level southward cross-equatorial transport of moist static energy, weakening the NH ascent in the TC formation zones; meanwhile, the increased meridional temperature gradients strengthen vertical wind shear, reducing NH TC genesis. The opposite is true for the SH. The results may help to constrain the models' uncertainty in the future TC projection. Reduction of anthropogenic aerosol emission may increase the NH TCs threat.

9.
J Hazard Mater ; 405: 124228, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33246821

ABSTRACT

The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•- was the main contributor for RhB degradation, while the roles of aqueous SO4•- and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions.

10.
Cancer Manag Res ; 12: 2427-2435, 2020.
Article in English | MEDLINE | ID: mdl-32308479

ABSTRACT

PURPOSE: Endoscopic submucosal dissection (ESD) is a widely performed procedure for esophageal carcinoma when the depth of invasion reaches the epithelium and lamina propria. However, ESD for esophageal carcinoma with depth of invasion exceeding the muscularis mucosa is controversial. This study aimed to evaluate the long-term outcomes of ESD for T1N0M0 (tumor invading the mucosa and submucosa [T1], no regional lymph node metastasis [N0], no distant metastasis [M0]) esophageal cancer. PATIENTS AND METHODS: Esophageal cancer was evaluated via pathology and computed tomography (CT) in consecutive patients with negative margin and without additional therapy. A total of 84 patients were included. The mean follow-up time was 42 (range, 9-99) months. RESULTS: No recurrence and metastasis were detected in the M1 and M2 group. The 5-year locoregional recurrence rate and distant metastasis rate were 4.2% and 5.6% for the M3 group and were 0% and 1.4% for the SM group, respectively. The 3- and 5-year overall survival were 94.4% (M1+M2 group, 95.0%; M3 group, 95.0%; SM group, 92.9%) and 80.9% (M1+M2 group, 95.0%; M3 group, 95.0%; SM group, 92.9%). Meanwhile, the 3- and 5-year disease-specific survival rates were 100% (M1+M2 group, 100%; M3 group, 100%; SM group, 100%) and 90.8% (M1+M2 group, 100%; M3 group, 90.0%; SM group, 85.7%). The major complications were postoperative strictures, most of which were grade 1-2. In total, two (4.8%) and one (1.2%) patient developed grade 3 and 5 late esophageal strictures, respectively. CONCLUSION: ESD complete resection yields low recurrence and metastasis rates in early esophageal cancer (T1N0M0). Thus, additional treatment is not necessary, and a watch and wait strategy may be reasonable.

11.
Sci Rep ; 9(1): 13878, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31554910

ABSTRACT

In this study, to fabricate stable floating photocatalytic spheres, facile alcohol solvothermal reduction was first employed to modify commercial TiO2 (P25) photocatalysts to harvest visible light and improve their performances for photodegrading phenol in seawater exciting by visible light. Floating photocatalytic spheres were then prepared by loading reduced P25 photocatalysts on inner and outer surfaces of acrylic hollow spheres. The structural characterizations showed that reduction of P25 introduced disorder-crystalline shell-core structures with present Ti3+ in reduced P25 photocatalysts. These features facilitated visible light response and phenol degradation in seawater under visible light irradiation. As reduction time or temperature of alcohol solvothermal process rose, more Ti3+ and shell-core structures were introduced into reduced P25, resulting in higher performances towards phenol degradation in seawater. However, extended periods of time and elevated temperatures decreased disordered layer of reduced P25, deteriorating the photocatalytic performances. Thanks to good light transmission of the hollow spheres and the high performance of the reduced P25, the photocatalytic performances of spheres loaded with reduced P25 could effectively degrade phenol in seawater even at low concentrations. The removal rate of phenol by floating spheres reached more than 95% after 8 h. In addition, the floating spheres displayed good stability and convenient reusability after six repeated photocatalytic degradation for phenol in seawater, promising features for future treatment of organic pollutants in oceans.

12.
Proc Natl Acad Sci U S A ; 115(33): 8307-8310, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061409

ABSTRACT

Analyses of datasets from manned research flights that penetrated hurricane eyes and tropical cyclone (TC) damage surveys strongly suggest the existence of tornado-scale vortices in the turbulent boundary layer of the TC eyewall. However, their small horizontal scale, their fast movement, and the associated severe turbulence make the tornado-scale vortex very difficult to observe directly. To understand tornado-scale vortices in the TC eyewall and their influence on the TC vortex, mesoscale rainbands, and convective clouds, a numerical experiment including seven nested domains with the smallest horizontal grid interval of 37 m is conducted to perform a large eddy simulation (LES) with the Advanced Weather Research and Forecast (WRF) model. We show that most of the observed features associated with tornado-scale vortices can be realistically simulated in the WRF-LES framework. The numerical simulation confirms the existence of simulated tornado-scale vortices in the turbulent boundary layer of the TC eyewall. Our numerical experiment suggests that tornado-scale vortices are prevalent at the inner edge of the intense eyewall convection.

13.
Environ Sci Technol ; 51(11): 6202-6210, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28488850

ABSTRACT

Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO2 and N2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO2 played a major role in the increase in the separation performance of the hybrid membranes for CO2, although the diffusion coefficients for CO2 also increased. Both the higher condensability and the strong affinity between CO2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.


Subject(s)
Carbon Dioxide , Graphite , Membranes, Artificial , Oxides , Polymerization , Polymers
14.
J Colloid Interface Sci ; 478: 145-54, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27295318

ABSTRACT

Graphene oxide-Ag nanoparticle composites were prepared through impregnation reduction using different reactants. Transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy analyses were performed to characterize differences in the morphologies of three different Ag-GO composites. Scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry analyses were also applied to evaluate the morphology and thermal stability of the hybrid membranes. Swelling-sorption and pervaporation experiments of benzene and cyclohexane were conducted to evaluate the separation performance of hybrid membranes containing different Ag-GO composites. Results demonstrated that small Ag nanoparticles generated through impregnation reduction using Ag(NH3)2(+) and PEG were homogeneously distributed in the hybrid membranes because of moderate reduction rate. The polymide (PI) hybrid membrane exhibited high separation performance. Increase in Ag content in the Ag-GO samples led to the formation of Ag particles on the GO surface; these particles enhanced the separation performance of the hybrid membranes. When Ag-GO samples with 15 mass percent added, the hybrid membrane showed the highest separation performance and its maximum separation factor in the pervaporation experiments reached 35. It is more than three times higher than that of the GO/PI hybrid membrane. Moreover, large Ag particles were formed and aggregated during the preparation and polymerization of Ag-GO samples with high Ag contents; these particles reduced the separation performance of the hybrid membranes.

15.
Huan Jing Ke Xue ; 36(2): 559-67, 2015 Feb.
Article in Chinese | MEDLINE | ID: mdl-26031083

ABSTRACT

Photodegradation of pollutions by TiO2 under irradiation of weak UV and visible lights was one of the key points to expand the application of heterogeneous photocatalysis. Based on the adsorption phase synthesis, N doping and co-doping with N and Fe2O3 were employed to prepare TiO2 multi composite photocatalysts. The activity of these photocatalyts was evaluated by photodegradation of methyl-orange illuminated under weak UV and visible lights. Via UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra, the effects on the light absorption and visible response expansion of catalysts caused by different conditions were explored, such as sintering temperature, doping content of N and co-doping. Followed that, the changes in the photocatalytic activities were studied under the irradiation of weak light. The results showed that, N doping could enhance the light absorption of the catalysts, thus significantly enhanced their photocatalytic activity illuminated under UV weak light. All N-doped photocatalysts had a higher activity than the commercial available P25 photocatalyst. The visible response of catalysts was expanded little caused by N doping, thereby most catalysts doped by single N element had no activity illuminated by weak visible light. Only the catalyst doped with 5% of N element showed a weak activity after calcined at 900 degrees C . Due to the synergy effects between N doping and Fe2O3 coupling, co-doping did not only enhance the light absorption of the catalysts, but also significantly expanded the visible response of catalysts. So, co-doped catalysts showed a good catalytic activity when excited by weak visible light.


Subject(s)
Ferric Compounds/chemistry , Light , Titanium/chemistry , Adsorption , Azo Compounds , Catalysis , Photoelectron Spectroscopy , Photolysis , Ultraviolet Rays , X-Ray Diffraction
16.
Environ Sci Technol ; 49(13): 8004-11, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26024066

ABSTRACT

Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.


Subject(s)
Carbon Dioxide/isolation & purification , Chemical Fractionation/instrumentation , Graphite/chemistry , Membranes, Artificial , Nitrogen/isolation & purification , Chemical Fractionation/methods , Equipment Design , Oxidation-Reduction , Oxides/chemistry , Permeability , Polymerization , Polyurethanes/chemistry
17.
Phys Chem Chem Phys ; 15(23): 9084-92, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23644556

ABSTRACT

In this paper, isocyanate-treated graphene oxide (iGO), which can be well dispersed in organic solvent, was prepared in a simple manner and showed excellent compatibility with polysulfone (PSF). iGO-PSF ultrafiltration membranes were prepared by the classical phase inversion method. The separation performance and the antifouling property of the prepared membranes were investigated in detail. The antifouling property of the prepared membranes was found to be greatly enhanced by the addition of iGO, and we attributed the enhanced antifouling property to the improved hydrophilicity, the more negative zeta potential and the improved smoothness of the membrane surface.


Subject(s)
Graphite/chemistry , Isocyanates/chemistry , Membranes, Artificial , Oxides/chemistry , Polymers/chemistry , Sulfones/chemistry , Ultrafiltration/instrumentation , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Serum Albumin, Bovine/isolation & purification , Solvents
18.
19.
World J Gastroenterol ; 18(48): 7319-26, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23326140

ABSTRACT

AIM: To elucidate high mobility group-box 3 (HMGB3) protein expression in gastric adenocarcinoma, its potential prognostic relevance, and possible mechanism of action. METHODS: Ninety-two patients with gastric adenocarcinomas surgically removed entered the study. HMGB3 expression was determined by immunohistochemistry through a tissue microarray procedure. The clinicopathologic characteristics of all patients were recorded, and regular follow-up was made for all patients. The inter-relationship of HMGB3 expression with histological and clinical factors was analyzed using nonparametric tests. Survival analysis was carried out by Kaplan-Meier (log-rank) and multivariate Cox (Forward LR) analyses between the group with overexpression of HMGB3 and the group with low or no HMGB3 expression to determine the prognosis value of HMGB3 expression on overall survival. Further, HMGB3 expression was knocked down by small hairpin RNAs (shRNAs) in the human gastric cancer cell line BGC823 to observe its influence on cell biological characteristics. The MTT method was utilized to detect gastric cancer cell proliferation changes, and cell cycle distribution was analyzed by flow cytometry. RESULTS: Among 92 patients with gastric adenocarcinomas surgically removed in this study, high HMGB3 protein expression was detected in the gastric adenocarcinoma tissues vs peritumoral tissues (P < 0.001). Further correlation analysis with patients' clinical and histology variables revealed that HMGB3 overexpression was obviously associated with extensive wall penetration (P = 0.005), a positive nodal status (P = 0.004), and advanced tumor-node-metastasis (TNM) stage (P = 0.001). But there was no correlation between HMGB3 overexpression and the age and gender of the patient, tumor localization or histologic grade. Statistical Kaplan-Meier survival analysis disclosed significant differences in overall survival between the HMGB3 overexpression group and the HMGB3 no or low expression group (P = 0.006). The expected overall survival time was 31.00 ± 3.773 mo (95%CI = 23.605-38.395) for patients with HMGB3 overexpression and 49.074 ± 3.648 mo (95%CI = 41.925-57.311) for patients with HMGB3 no and low-level expression. Additionally, older age (P = 0.040), extensive wall penetration (P = 0.008), positive lymph node metastasis (P = 0.005), and advanced TNM tumor stage (P = 0.007) showed negative correlation with overall survival. Multivariate Cox regression analysis indicated that HMGB3 overexpression was an independent variable with respect to age, gender, histologic grade, extent of wall penetration, lymph nodal metastasis, and TNM stage for patients with resectable gastric adenocarcinomas with poor prognosis (hazard ratio = 2.791, 95%CI = 1.233-6.319, P = 0.019). In the gene function study, after HMGB3 was knocked down in the gastric cell line BGC823 by shRNA, the cell proliferation rate was reduced at 24 h, 48 h and 72 h. Compared to BGC823 shRNA-negative control (NC) cells, the cell proliferation rate in cells that had HMGB3 shRNA transfected was significantly decreased (P < 0.01). Finally, cell cycle analysis by FACS showed that BGC823 cells that had HMGB3 knocked down were blocked in G1/G0 phase. The percentage of cells in G1/G0 phase in BGC823 cells with shRNA-NC and with shRNA-HMGB3 was 46.84% ± 1.7%, and 73.03% ± 3.51% respectively (P = 0.001), whereas G2/M cells percentage decreased from 26.51% ± 0.83% to 17.8% ± 2.26%. CONCLUSION: HMGB3 is likely to be a useful prognostic marker involved in gastric cancer disease onset and progression by regulating the cell cycle.


Subject(s)
Adenocarcinoma/metabolism , Adenocarcinoma/surgery , Gene Expression Regulation, Neoplastic , HMGB3 Protein/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/surgery , Aged , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Prognosis , Proportional Hazards Models , RNA Interference , Treatment Outcome
20.
J Colloid Interface Sci ; 300(1): 286-92, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16698030

ABSTRACT

Asymmetric ultrafiltration membranes were fabricated from the blends of phenolphthalein polyethersulfone (PES-C) and acrylonitrile copolymers containing charged groups, poly(acrylonitrile-co-acrylamido methylpropane sulfonic acid) (PAN-co-AMPS). From the surface analysis by XPS and ATR-FTIR, it was found that the charged groups tend to accumulate onto the membrane surface. This result indicated that membrane surface modification for imparting surface electrical properties could be carried out by blending charged polymer. Furthermore, with the help of a relatively novel method to measure membrane conduction, the true zeta potentials calculated on the basis of the streaming potential measurements were used to reflect the charge state of membrane surface. In addition, it was noteworthy that, from the profiles of zeta potential versus pH curves and the magnitude of zeta potentials, the determination of zeta potential was dependent not only on the electrical properties of membrane surface but also on its hydrophilicity. At last, based on a relatively elaborate study on the electrostatic interaction between the membrane surface and protein, it was found that these charged membranes could meet different demands of membrane applications, such as resisting protein fouling or protein separation, through adjusting solution pH value.

SELECTION OF CITATIONS
SEARCH DETAIL
...