Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Syst Biol Reprod Med ; 70(1): 38-51, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38323618

ABSTRACT

Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.


Subject(s)
Mitochondrial Diseases , Preimplantation Diagnosis , Pregnancy , Female , Child , Humans , DNA, Mitochondrial/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/prevention & control , Genetic Testing , Mitochondria , Fertilization in Vitro
2.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223121

ABSTRACT

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

3.
Ecol Lett ; 26(6): 858-868, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36922741

ABSTRACT

Understanding the effects of diversity on ecosystem stability in the context of global change has become an important goal of recent ecological research. However, the effects of diversity at multiple scales and trophic levels on ecosystem stability across environmental gradients remain unclear. Here, we conducted a field survey of α-, ß-, and γ-diversity of plants and soil biota (bacteria, fungi, and nematodes) and estimated the temporal ecosystem stability of normalized difference vegetation index (NDVI) in 132 plots on the Mongolian Plateau. After climate and soil environmental variables were controlled for, both the α- and ß-diversity of plants and soil biota (mainly via nematodes) together with precipitation explained most variation in ecosystem stability. These findings evidence that the diversity of both soil biota and plants contributes to ecosystem stability. Model predictions of the future effects of global changes on terrestrial ecosystem stability will require field observations of diversity of both plants and soil biota.


Subject(s)
Ecosystem , Grassland , Soil , Biota , Plants
4.
Am J Transl Res ; 15(12): 6878-6887, 2023.
Article in English | MEDLINE | ID: mdl-38186988

ABSTRACT

There is a serious worldwide health problem caused by chronic kidney disease (CKD), yet there are few viable therapies. Therapeutic promise in the treatment of chronic kidney disease (CKD) has been shown by the use of the traditional Chinese herbal compound Shengyang Yiwei Decoction (SYD). However, the chemical processes through which SYD exerts its effects are still unknown. The purpose of this network pharmacology research is to better understand the molecular mechanism of action of Shengyang Yiwei Decoction (SYD) in the treatment of chronic kidney disease (CKD). Traditional Chinese Medicine Systems Pharmacology (TCMSP) was first searched for information on the chemical components of Shengyang Yiwei Decoction. The molecular targets of SYD were then predicted using the Pharm Mapper service. After that, we used databases like DIG-SEE, TTD, and OMIM to zero down on the targets most closely linked to CKD. Cytoscape 3.2.1 was used to generate the component-target network representing SYD's therapy of CKD. In addition, KEGG signal pathways and GO biological processes were analyzed using the DAVID database, and the findings were displayed via OmicShare Tools. Twenty-two active components were isolated from Shengyang Yiwei Decoction, and they were linked to 36 therapeutic targets for CKD in the current investigation. According to the results of the network pharmacology study, 41 signaling pathways are involved in mediating the therapeutic effects of SYD. In addition, SYD's broad therapeutic impact in CKD therapy was shown to include 29 molecular activities, 14 cell components, and 91 biological processes. This research utilizes a multivariate analysis to provide light on the strategies and outcomes of treating CKD using Shengyang Yiwei Decoction. Clinical therapeutic methods for CKD management may benefit greatly from a thorough knowledge of the underlying processes and material foundation of this disease.

5.
Front Microbiol ; 13: 1063340, 2022.
Article in English | MEDLINE | ID: mdl-36569066

ABSTRACT

Although habitat loss and subdivision are considered main causes of sharp declines in biodiversity, there is still great uncertainty concerning the response of soil microbial biomass, diversity, and assemblage to habitat subdivision at the regional scale. Here, we selected 61 subtropical land-bridge islands (with small, medium, and large land areas) with a 50-year history of habitat subdivision and 9 adjacent mainland sites to investigate how habitat subdivision-induced unequal-sized patches and isolation affects biomass, diversity, and assemblages of soil bacteria and fungi. We found that the soil bacterial and fungal biomass on all unequal-sized islands were higher than that on mainland, while soil bacterial and fungal richness on the medium-sized islands were higher than that on mainland and other-sized islands. The habitat subdivision-induced increases in microbial biomass or richness were mainly associated with the changes in subdivision-specified habitat heterogeneities, especial for soil pH and soil moisture. Habitat subdivision reduced soil bacterial dissimilarity on medium-sized islands but did not affect soil fungal dissimilarity on islands of any size. The habitat fragment-induced changes in soil microbial dissimilarity were mainly associated with microbial richness. In summary, our results based on the responses of soil microbial communities from subtropical land-bridge islands are not consistent with the island biogeographical hypotheses but are to some extent consistent with the tradeoff between competition and dispersal. These findings indicate that the response of soil microbial communities to habitat subdivision differed by degree of subdivision and strongly related to habitat heterogeneity, and the distribution of microbial diversity among islands is also affected by tradeoff between competition and dispersal.

7.
Sci Total Environ ; 818: 151858, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34822882

ABSTRACT

The biotic drivers for the temporal stability of aboveground net productivity (ANPP) in natural ecosystems are well understood. However, knowledge gaps still exist regarding the relative importance of biotic and abiotic drivers regulating the temporal stability of aboveground productivity (ANPP), belowground net productivity (BNPP), and community net productivity (NPP) under global change and land use scenarios. Thus, in this study, we aimed to study the effects of increased water and nitrogen availability on temporal stability of ANPP, BNPP, and NPP and underlying mechanisms at sites with different long-term grazing histories in typical grasslands of the Inner Mongolia. The results suggested that resource addition affected the ANPP stability, but it did not change the stability of BNPP and NPP, which were all mediated by grazing histories. Most importantly, our study further indicated that species asynchrony, primarily contributed to the stability of ANPP and NPP by weakening their variation, and species asynchrony was regulated directly by plant diversity-related variables and indirectly by soil variables which were affected by resource addition and grazing history. In addition, an increase of ANPP stimulated under resource addition was a secondary contributor to ANPP stability. Specifically, the community-weighted mean of specific leaf area (CWM SLA) regulated the ANPP stability indirectly by promoting species asynchrony, while functional diversity of leaf area and SLA both directly controlled the BNPP stability. Findings of our study demonstrate that different mechanisms drove temporal stability of above- and belowground productivity. Our study has important implications for maintaining the temporal stability of community productivity and for establishing sustainable management practices of semi-arid grasslands under global change and land use scenarios.


Subject(s)
Ecosystem , Grassland , China , Plant Leaves , Poaceae , Soil
8.
Mitochondrial DNA B Resour ; 6(6): 1691-1693, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34104740

ABSTRACT

The complete mitochondrial genome of Aucklandia lappa was sequenced for the first time. The mitochondrial genome length was 320,439 bp, with 45.05% GC contents. There were 67 genes annotated, including 31 known protein-coding genes, 25 tRNAs, and six rRNAs. The maximum likelihood method was used to establish the phylogenetic tree of 37 species. Results have shown that A. lappa and Arctium lappa were sister groups. It reveals the genetic relationship between different species and provides a theoretical basis for the establishment of a classification system.

9.
Mitochondrial DNA B Resour ; 6(3): 779-781, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33763576

ABSTRACT

Aconitum kusnezoffii Rchb. is a medicinal plant in the Ranunculaceae family. In this study, we report the first complete mitochondrial genome of A. kusnezoffii. The total length of the mitochondrial genome of A. kusnezoffii is 440,720 bp and the GC content of 46.85%. The mitochondrial genome contained 37 protein-coding genes, 29 tRNAs, and three rRNAs. These data will provide the basis for the systematic evolutionary analysis of Ranunculaceae.

10.
Mitochondrial DNA B Resour ; 6(2): 475-477, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33628894

ABSTRACT

The complete mitochondrial genome of an important medicinal plant Glycyrrhiza uralensis Fisch. is reported for the first time. The mitochondrial genome sequence of G. uralensis was 463,869 bp in length and had a GC content of 45.19%. The genome contained 40 protein-coding genes (PCGs), 30 transfer RNAs (tRNAs), and three ribosomal RNAs (rRNAs). The phylogenetic tree was built based on 25 plants, using the maximum-likelihood method. These data will provide certain help to determine the taxonomic status of G. uralensis.

11.
PLoS One ; 15(9): e0239268, 2020.
Article in English | MEDLINE | ID: mdl-32991580

ABSTRACT

Nitraria sibirica Pall. is a shrub species belonging to the family of Nitrariaceae. It plays pivotal role in arid ecosystems since it is tolerant to high salinity and drought. This species is widely distributed throughout Mongolia and it is mostly found in arid ecosystems of Mongolian Gobi Desert. In this study, we developed allometric equations for estimating above-ground biomass of N. sibirica using various structural descriptors and pinpointed the best models. Variables that precisely predicted above-ground biomass were a combination of basal diameter, crown area, and height. The allometric growth equation constructed is not merely helpful to achieve accurate estimations of the above-ground biomass in shrub vegetation in the Gobi Desert of Mongolia, but also can provide a reference for the above-ground biomass of Nitraria species growing in analogous habitats worldwide. Therefore, our research purposes an important advance for biomass estimation in Gobi ecosystems and complements previous studies of shrub biomass worldwide. This study provides reasonable estimates of biomass of N. sibirica, which will be valuable in evaluations of biological resources, especially for quantifying the main summer diet of Gobi bears, and also can be an alternative tool for assessing carbon cycling in Gobi Desert.


Subject(s)
Desert Climate , Ecosystem , Magnoliopsida/growth & development , Biomass , Mongolia , Seasons
12.
Glob Chang Biol ; 26(2): 960-970, 2020 02.
Article in English | MEDLINE | ID: mdl-31529564

ABSTRACT

Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing-induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro-food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom-up effects on soil micro-food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro-food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro-food webs and then weakened the correlation between soil micro-food webs and soil C and N mineralization. These results suggest that changes in soil micro-food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land-use changes.


Subject(s)
Ecosystem , Soil , Animals , Biomass , Food Chain , Grassland , Herbivory
13.
Ecol Evol ; 8(23): 11887-11899, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30598784

ABSTRACT

Around the world, climate change has impacted many species. In this study, we used bioclimatic variables and biophysical layers of Central Asia and the Asian Highlands combined with presence data of brown bear (Ursus arctos) to understand their current distribution and predict their future distribution under the current rate of climate change. Our bioclimatic model showed that the current suitable habitat of brown bear encompasses 3,430,493 km2 in the study area, the majority of which (>65%) located in China. Our analyses demonstrated that suitable habitat will be reduced by 11% (378,861.30 km2) across Central Asia and the Asian Highlands by 2,050 due to climate change, predominantly (>90%) due to the changes in temperature and precipitation. The spatially averaged mean annual temperature of brown bear habitat is currently -1.2°C and predicted to increase to 1.6°C by 2,050. Mean annual precipitation in brown bear habitats is predicted to increase by 13% (from 406 to 459 mm) by 2,050. Such changes in two critical climatic variables may significantly affect the brown bear distribution, ethological repertoires, and physiological processes, which may increase their risk of extirpation in some areas. Approximately 32% (1,124,330 km2) of the total suitable habitat falls within protected areas, which was predicted to reduce to 1,103,912 km2 (1.8% loss) by 2,050. Future loss of suitable habitats inside the protected areas may force brown bears to move outside the protected areas thereby increasing their risk of mortality. Therefore, more protected areas should be established in the suitable brown bear habitats in future to sustain populations in this region. Furthermore, development of corridors is needed to connect habitats between protected areas of different countries in Central Asia. Such practices will facilitate climate migration and connectivity among populations and movement between and within countries.

14.
Onco Targets Ther ; 10: 667-679, 2017.
Article in English | MEDLINE | ID: mdl-28223824

ABSTRACT

PURPOSE: The constitutive activation of the Ras-MEK-ERK signaling pathway in oral cavity squamous cell carcinoma (OSCC) has been found to be tightly controlled at multiple levels under physiological conditions. RASA1 and SPRED1 are two important negative regulators of this pathway, but the exact regulating mechanism remains unclear. In this study, we aimed to explore the potential regulating mechanisms involved in the Ras-MEK-ERK signaling pathway in OSCC. MATERIALS AND METHODS: MicroRNA (miRNA) expression was detected by quantitative reverse-transcription polymerase chain reaction. The protein levels of RASA1, SPRED1, and signaling proteins were detected by Western blot. Cell growth was determined using CCK-8 reagent, colony formation was stained by crystal violet, and cell invasion was tested using transwell chambers. Cell apoptosis and the cell cycle were then analyzed by flow cytometry. The binding of miR182 with RASA1 or SPRED1 was evaluated by luciferase reporter assays on a dual-luciferase reporter system. RESULTS: The expression of miR182 was found to be upregulated significantly in malignant oral carcinoma tissues compared with the adjacent nonmalignant tissues, and was inversely correlated with protein levels of RASA1 and SPRED1. Overexpression of miR182 in OSCC cell lines sustained Ras-MEK-ERK signaling-pathway activation, and promoted cell proliferation, cell-cycle progression, colony formation, and invasion capacity, whereas miR182 downregulation alleviated these properties significantly in vitro. Furthermore, we demonstrated that miR182 exerted its oncogenic role in OSCC by directly targeting and suppressing RASA1 and SPRED1. CONCLUSION: Our results bring new insights into the important role of miR182 in the activation of the Ras-MEK-ERK signaling pathway, and suggest that miR182 may be used as a potential target for treatment of OSCC, prompting further investigation into miRNA antisense oligonucleotides for cancer therapy.

15.
Article in Chinese | MEDLINE | ID: mdl-26767259

ABSTRACT

OBJECTIVE: To clone and express Echinococcus granulosus pyruvate dehydrogenase (EgPDH) gene and analyze EgPDH protein with bioinformatics tools and online database. METHODS: The total RNAs of E. granulosus was extracted and reversely transcribed into cDNA. The EgPDH gene was cloned into pET28b to construct the recombinant vector and expressed in E. coli BL21 (DE3) system subsequently. The signal peptide, transmembrane helices and subcellular location in EgPDH sequence were analyzed by the online software SignalP4.1, TMHMM sever v.2.0 and TargetP1.1, respectively. Subsequently, the structure of EgPDH was predicted by SMART. Finally, the homologue sequence and conserved sites were aligned by using BLASTP and GeneDoc among the homologous sequences of EgPDH. Based on the alignment of PDH sequence, an evolutionary tree of E. granulosus and other species were constructed by the neighbor joining method of MEGA6 software. RESULTS: The EgPDH gene was successfully amplified from cDNA of E. granulosus and expressed in the soluble fractions. The bioinformatics analysis revealed that EgPDH was a classical secreted protein and contained transketolase domain. The homology analysis revealed that the amino acid sequence of EgPDH was highly conserved in catalytic sites Glu57, Leu72, Ile86 and Phe114. The phylogenetic tree analysis of PDH proteins showed the closest relationship between E. granulosus and E. multilocularis. CONCLUSION: An EgPDH gene is cloned and expressed successfully, and the recombinant protein is analyzed by the bioinformatics approaches and structure predication. The study provides useful information for further functional study of the EgPDH protein.


Subject(s)
Computational Biology , Echinococcus granulosus/enzymology , Ketone Oxidoreductases/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Ketone Oxidoreductases/chemistry , Ketone Oxidoreductases/physiology , Molecular Sequence Data
16.
Zhonghua Jie He He Hu Xi Za Zhi ; 31(2): 112-5, 2008 Feb.
Article in Chinese | MEDLINE | ID: mdl-18683782

ABSTRACT

OBJECTIVE: To describe the characteristics of 3 cases of pulmonary alveolar microlithiasis in a family, and therefore to improve the understanding of the disease. METHODS: To analyze the clinical, laboratory and radiological data of three patients with pulmonary alveolar microlithiasis in a family and the relevant literatures were reviewed. RESULTS: There was a typical manifestation in these three cases of pulmonary alveolar microlithiasis: progressive dyspnoea, cough, family history. Chest X-ray and computed tomography demonstrate: the pulmones was full of high density reflection of intra-alveolar microliths especially in middle-lower lobe and posterior lobe. The etiology of these three cases is still unknown, consanguineous marriage of parents is possible reason. There was not effective therapies to them. CONCLUSION: Pulmonary alveolar microlithiasis is a disease without clear known etiology and effective therapy. For a patient with radiological features of high density intra-alveolar microliths and a positive family history, the diagnosis should be highly suspected.


Subject(s)
Calculi/genetics , Pulmonary Alveoli , Adult , Calculi/pathology , Female , Humans , Male , Pedigree , Pulmonary Alveoli/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...