Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(3): e0271421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35658579

ABSTRACT

Defining the precise relationship between resistance mutations and quantitative phenotypic drug susceptibility testing will increase the value of whole-genome sequencing (WGS) for predicting tuberculosis drug resistance. However, a large number of WGS data sets currently lack corresponding quantitative phenotypic data-the MICs. Using MYCOTBI plates, we determined the MICs to nine antituberculosis drugs for 154 clinical multidrug-resistant tuberculosis isolates from the Shenzhen Center for Chronic Disease Control in Shenzhen, China. Comparing MICs with predicted drug-resistance profiles inferred by WGS showed that WGS could predict the levels of resistance to isoniazid, rifampicin, streptomycin, fluoroquinolones, and aminoglycosides. We also found some mutations that may not be associated with drug resistance, such as EmbB D328G, mutations in the gid gene, and C-12T in the eis promoter. However, some strains carrying the same mutations showed different levels of resistance to the corresponding drugs. The MICs of different strains with the RpsL K88R, fabG1 C-15T mutations and some with mutations in embB and rpoB, had MICs to the corresponding drugs that varied by 8-fold or more. This variation is unexplained but could be influenced by the bacterial genetic background. Additionally, we found that 32.3% of rifampicin-resistant isolates were rifabutin-susceptible, particularly those with rpoB mutations H445D, H445L, H445S, D435V, D435F, L452P, S441Q, and S441V. Studying the influence of bacterial genetic background on the MIC and the relationship between rifampicin-resistant mutations and rifabutin resistance levels should improve the ability of WGS to guide the selection of medical treatment regimens. IMPORTANCE Whole-genome sequencing (WGS) has excellent potential in drug-resistance prediction. The MICs are essential indications of adding a particular antituberculosis drug dosage or changing the entire treatment regimen. However, the relationship between many known drug-resistant mutations and MICs is unclear, especially for rarer ones. The results showed that WGS could predict resistance levels to isoniazid, rifampicin, streptomycin, fluoroquinolones, and aminoglycosides. However, some mutations may not be associated with drug resistance, and some others may confer various MICs to strains carrying them. Also, 32.3% of rifampicin (RIF)-resistant strains were classified as sensitive to rifabutin (RFB), and some mutations in the rpoB gene may be associated with this phenotype. Our data on the MIC distribution of strains with some rarer mutations add to the accumulated data on the resistance level associated with such mutations to help guide further research and draw meaningful conclusions.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Aminoglycosides/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Fluoroquinolones/pharmacology , Humans , Isoniazid , Microbial Sensitivity Tests , Mutation , Rifabutin/therapeutic use , Rifampin/pharmacology , Rifampin/therapeutic use , Streptomycin , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
2.
Lancet Reg Health West Pac ; 8: 100106, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34327429

ABSTRACT

BACKGROUND: Tuberculosis (TB) in emerging cities is often a disease of recent immigrants, and understanding this epidemiology is crucial for designing effective control and prevention strategies. METHODS: We conducted a retrospective population-based genomic epidemiological study of culture-positive pulmonary TB patients diagnosed between June 2014 and November 2017 in the Bao'an District of Shenzhen, a Chinese city with dramatic recent growth. After whole genome sequencing, transmission clusters were defined as strains differing by no more than 12 SNPs. FINDINGS: Of 1696 culture-positive TB patients, 93•8% (1591/1696) were migrants, with 51•6% (821/1591) employed in housekeeping or unemployed. Of the 1460 migrants with known residence time, 47•7% (697/1460) developed TB within two years after arriving in Bao'an. Only 12•2% (207/1696) of Bao'an isolates were in genomic clusters, indicating that recent transmission was not the primary cause of TB in Bao'an. The isolates' median terminal branch length was 56 SNPs, more than could have accumulated since the arrival of the migrants in Bao'an. The migrants' isolates had genotypic distributions similar to those in their home provinces. One strain isolated in Bao'an belonged to a clade circulating in the patient's home province, providing further evidence that the strains were brought to Bao'an with the migrants. INTERPRETATION: TB in the Bao'an District is principally caused by reactivation of infections acquired by migrants in their home provinces. Nearly half developed TB within two years after arriving in Bao'an, suggesting a need for increased TB screening of migrants, especially housekeeping workers and the unemployed. FUNDING: Sanming Project of Medicine in Shenzhen; National Science and Technology Major Project of China; Natural Science Foundation of China.

SELECTION OF CITATIONS
SEARCH DETAIL
...