Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Sci Total Environ ; 947: 174536, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977086

ABSTRACT

As an emerging environmental endocrine disruptor, polystyrene microplastics (PS-MPs) are considered to have the anti-androgenic feature and impair male reproductive function. To explore the adverse effects of PS-MPs on testosterone synthesis and male reproduction and further elucidate underlying mechanisms, BALB/c mice and Leydig cells were employed in the present work. The results indicated that 50 µm PS-MPs accumulated in mouse testes and were internalized into the cytoplasm. This not only damaged the testicular histomorphology and ultrastructure, but also reduced the viability of Leydig cells and the serum level of GnRH, FSH, LH, and testosterone. After PS-MPs exposure, the ubiquitination degradation and miR-425-3p-targeted modulation synergistically contributed to the suppression of GPX1, which induced oxidative stress and subsequently activated the PERK-EIF2α-ATF4-CHOP pathway of endoplasmic reticulum (ER) stress. The transcription factor CHOP positively regulated the expression of SRD5A2 by directly binding to its promoter region, thereby accelerating testosterone metabolism and ultimately lowing testosterone levels. Besides, PS-MPs compromised testosterone homeostasis via interfering with the hypothalamic-pituitary-testis (HPT) axis. Taken together, PS-MPs possess an anti-androgenic characteristic and exert male reproductive damage effects. The antioxidant enzyme GPX1 plays a crucial role in the PS-MPs-mediated testosterone decline.

2.
Article in English | MEDLINE | ID: mdl-39005010

ABSTRACT

BACKGROUND AND AIM: Primary liver cancer, particularly hepatocellular carcinoma (HCC), represents a substantial global health challenge. Although immune checkpoint inhibitors are effective in HCC treatment, several patients still experience disease progression. Interleukin-1 (IL-1) regulates immunity and inflammation. We investigate the role of IL-1 in HCC development and progression and determine the potential therapeutic impact of gemcitabine in treating HCC. METHODS: Hydrodynamics-based transfection, employing the sleeping beauty transposase system, delivered surrogate tumor antigens, NRAS (NRAS proto-oncogene, GTPase), ShP53, and SB100 to C57BL/6 mice. A basic HCC mouse model was established. Pathogen-free animals were tested for serum and hepatotoxicity. The HCC prognosis was monitored using alanine aminotransferase and aspartate aminotransferase levels. Liver histology immunohistochemistry and mouse splenocyte/intra-hepatic immune cell flow cytometry were conducted. IL-1ß levels in human and mouse serum were assessed. RESULTS: Interleukin-1ß levels were elevated in patients with HCC compared with those in non-HCC controls. Hepatic IL-1ß levels were higher in HCC mouse models than those in non-HCC mice, suggesting localized hepatic inflammation. IL-1 receptor type 1 (IL-1R1) knockout (IL-1R1-/-) mice exhibited less severe HCC progression than that in wild-type mice, despite the high intra-hepatic IL-1ß concentration. IL-1R1-/- mice exhibited increased hepatic levels of myeloid-derived suppressor cells and regulatory T cells, which may exacerbate HCC. Gemcitabine significantly reduced the HCC tumor burden, improved liver conditions, and increased survival rates in HCC mouse models. Gemcitabine reduced the hepatic levels of myeloid-derived suppressor cells and regulatory T cells, potentially alleviating immune suppression in the liver. CONCLUSIONS: Targeting IL-1 or combining gemcitabine with immunotherapy is a promising approach for treating advanced-stage HCC.

3.
Biomed Pharmacother ; 177: 117075, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964181

ABSTRACT

Obesity is a growing epidemic among reproductive-age men, which can cause and exacerbate male infertility by means of associated comorbidities, endocrine abnormalities, and direct effects on the fidelity and throughput of spermatogenesis. A prominent consequence of male obesity is a reduction in testosterone levels. Natural products have shown tremendous potential anti-obesity effects in metabolic diseases. This study aimed to investigate the potential of apigenin (AP) to alleviate testicular dysfunction induced by a high-fat diet (HFD) and to investigate the underlying mechanisms, focusing on endoplasmic reticulum stress (ERS) and testosterone synthesis. A murine model of obesity was established using HFD-fed mice. The effects of AP on obesity, lipid metabolism, testicular dysfunction, and ERS were assessed through various physiological, histological, and molecular techniques. Administration of AP (10 mg/kg) ameliorated HFD-induced obesity and testicular dysfunction in a mouse model, as evidenced by decreased body weight, improved lipid profiles and testicular pathology, and restored protein levels related to testosterone. Furthermore, in vitro studies demonstrated that AP relieved ERS and recovered testosterone synthesis in murine Leydig cells (TM3) treated with free fatty acids (FFAs). It was also observed that AP rescued testosterone synthesis enzymes in TM3 cells, similar to that observed with the inhibitor of the PERK pathway (GSK2606414). In addition, ChIP, qPCR, and gene silencing showed that the C/EBP homologous protein (CHOP) bound directly to the promoter region of steroidogenic STAR and negatively modulated its expression. Collectively, AP has remarkable potential to alleviate HFD-induced obesity and testicular dysfunction. Its protective effects are attributable partly to mitigating ERS and restoring testosterone synthesis in Leydig cells.

4.
BMC Genomics ; 25(1): 450, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714918

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a novel kind of non-coding RNAs proved to play crucial roles in the development of multiple diabetic complications. However, their expression and function in diabetes mellitus (DM)-impaired salivary glands are unknown. RESULTS: By using microarray technology, 663 upregulated and 999 downregulated circRNAs companied with 813 upregulated and 525 downregulated mRNAs were identified in the parotid glands (PGs) of type2 DM mice under a 2-fold change and P < 0.05 cutoff criteria. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of upregulated mRNAs showed enrichments in immune system process and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Infiltration of inflammatory cells and increased inflammatory cytokines were observed in diabetic PGs. Seven differently expressed circRNAs validated by qRT-PCR were selected for coding-non-coding gene co-expression (CNC) and competing endogenous RNA (ceRNA) networks analysis. PPAR signaling pathway was primarily enriched through analysis of circRNA-mRNA networks. Moreover, the circRNA-miRNA-mRNA networks highlighted an enrichment in the regulation of actin cytoskeleton. CONCLUSION: The inflammatory response is elevated in diabetic PGs. The selected seven distinct circRNAs may attribute to the injury of diabetic PG by modulating inflammatory response through PPAR signaling pathway and actin cytoskeleton in diabetic PGs.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Profiling , Gene Regulatory Networks , Parotid Gland , RNA, Circular , Animals , RNA, Circular/genetics , Mice , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Parotid Gland/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Transcriptome , Gene Ontology , Male , Signal Transduction , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism
5.
Biomed Pharmacother ; 175: 116660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701563

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.


Subject(s)
Immunotherapy , Nanoparticles , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Immunotherapy/methods , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , B7-H1 Antigen/antagonists & inhibitors , Nanoparticle Drug Delivery System/chemistry , Female , Polyethylene Glycols/chemistry , Immune Checkpoint Inhibitors/pharmacology , Liposomes
6.
J Gastroenterol Hepatol ; 39(7): 1247-1255, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38509796

ABSTRACT

The development of alcohol-associated diseases is multifactorial, mechanism of which involves metabolic alteration, dysregulated immune response, and a perturbed intestinal host-environment interface. Emerging evidence has pinpointed the critical role of the intestinal host-microbiota interaction in alcohol-induced injuries, suggesting its contribution to disease initiation and development. To maintain homeostasis in the gut, the intestinal mucosa serves as the first-line defense against exogenous factors in the gastrointestinal tract, including dietary contents and the commensal microbiota. The gut-epithelial barrier comprises a physical barrier lined with a single layer of intestinal epithelial cells and a chemical barrier with mucus trapping host regulatory factors and gut commensal bacteria. In this article, we review recent studies pertaining to the disrupted gut-epithelial barrier upon alcohol exposure and examine how alcohol and its metabolism can affect the regulatory ability of intestinal epithelium.


Subject(s)
Ethanol , Gastrointestinal Microbiome , Intestinal Mucosa , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Animals , Homeostasis , Host Microbial Interactions , Alcohol Drinking/adverse effects
7.
Front Endocrinol (Lausanne) ; 15: 1322646, 2024.
Article in English | MEDLINE | ID: mdl-38327562

ABSTRACT

Background: Hyperlipidemia is common in primary membranous nephropathy (PMN) patients, and tubular atrophy (TA) is an unfavorable prognostic factor. However, the correlation between the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and TA is controversial. Therefore, our study aimed to investigate the association between the TG/HDL-C ratio and TA in PMN patients. Methods: We conducted a cross-sectional study and collected data from 363 PMN patients at Shenzhen Second People's Hospital from January 2008 to April 2023. The primary objective was to evaluate the independent correlation between the TG/HDL-C ratio and TA using binary logistic regression model. We used a generalized additive model along with smooth curve fitting and multiple sensitivity analyses to explore the relationship between these variables. Additionally, subgroup analyses were conducted to delve deeper into the results. Results: Of the 363 PMN patients, 75 had TA (20.66%). The study population had a mean age of 46.598 ± 14.462 years, with 217 (59.78%) being male. After adjusting for sex, age, BMI, hypertension, history of diabetes, smoking, alcohol consumption, UPRO, eGFR, HB, FPG, and ALB, we found that the TG/HDL-C ratio was an independent risk factor for TA in PMN patients (OR=1.29, 95% CI: 1.04, 1.61, P=0.0213). A non-linear correlation was observed between the TG/HDL-C ratio and TA, with an inflection point at 4.25. The odds ratios (OR) on the left and right sides of this inflection point were 1.56 (95% CI: 1.17, 2.07) and 0.25 (95% CI: 0.04, 1.54), respectively. Sensitivity analysis confirmed these results. Subgroup analysis showed a consistent association between the TG/HDL-C ratio and TA, implying that factors such as gender, BMI, age, UPRO, ALB, hypertension and severe nephrotic syndrome had negligible effects on the link between the TG/HDL-C ratio and TA. Conclusion: Our study demonstrates a non-linear positive correlation between the TG/HDL-C ratio and the risk of TA in PMN patients, independent of other factors. Specifically, the association is more pronounced when the ratio falls below 4.25. Based on our findings, it would be advisable to decrease the TG/HDL-C ratio below the inflection point in PMN patients as part of treatment strategies.


Subject(s)
Glomerulonephritis, Membranous , Hypertension , Humans , Male , Adult , Middle Aged , Female , Triglycerides , Cholesterol, HDL , Cross-Sectional Studies , Atrophy
8.
Foods ; 13(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254577

ABSTRACT

The liver is critical in alcohol metabolism, and excessive consumption heightens the risk of hepatic damage, potentially escalating to hepatitis and cirrhosis. Jiuzao, a by-product of Baijiu production, contains a rich concentration of naturally active polysaccharides known for their antioxidative properties. This study investigated the influence of Laowuzeng Jiuzao polysaccharide (LJP) on the development of ethanol-induced alcoholic fatty liver. Zebrafish larvae served as the model organisms for examining the LJPs hepatic impact via liver phenotypic and biochemical assays. Additionally, this study evaluated the LJPs effects on gene expression associated with alcoholic fatty liver and the composition of the intestinal microbiota through transcriptomic and 16 S rRNA gene sequencing analyses, respectively. Our findings revealed that LJP markedly mitigated morphological liver damage and reduced oxidative stress and lipid peroxidation in larvae. Transcriptome data indicated that LJP ameliorated hepatic fat accumulation and liver injury by enhancing gene expression involved in alcohol and lipid metabolism. Furthermore, LJP modulated the development of alcoholic fatty liver by altering the prevalence of intestinal Actinobacteriota and Firmicutes, specifically augmenting Acinetobacter while diminishing Chryseobacterium levels. Ultimately, LJP mitigated alcohol-induced hepatic injury by modulating gene expression related to ethanol metabolism, lipid metabolism, and inflammation and by orchestrating alterations in the intestinal microbiota.

9.
Behav Brain Res ; 461: 114848, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38185382

ABSTRACT

The impact of stress on mental and digestive health has been extensively studied, with chronic stress being associated with various disorders. However, age-related differences in the response to acute stress, both behaviorally and physiologically, remain poorly understood. Therefore, this study aimed to develop a model to detect transient stress in mice of different ages. The stressor employed in our experiments was a restraint stress procedure, where mice were subjected to brief periods of immobilization to induce an acute stress response. Male C3H/HeN mice aged 3, 6, 12, and 30 weeks were subjected to acute restrain stress (ARS) by being placed in a 50 ml conical centrifuge tube for 15 min. Subsequently, their behavior, organ tissues, hematological parameters, cortisol concentration, and immune responses were assessed. Following ARS, the increased in time and entries into the center by the 12-week-old mice following stress. In comparison to mice of other ages, those aged 6 weeks demonstrated notable elevations in erythrocytes, platelets, hemoglobin, and hematocrit, all of which were influenced by the time-dependent changes and the recovery process of ARS. Blood corticosterone levels were substantially elevated in all age groups after ARS. Furthermore, ARS induced a notable increase in leukocytes, basophils, residential macrophages, and CD4+ T cells in all age groups except for 3-week-old mice. However, the number of monocyte-derived macrophages and CD8+ T cells did not change significantly. Additionally, mice aged 3 and 6 weeks demonstrated an increase in GFAP+ cells following ARS, whereas NeuN+ cells decreased across all ages. These results suggest that ARS has varying effects on the behavior, cortisol concentration, and quantity of blood cells as well as hepatic immune cells in mice of different ages. These age-dependent responses shed light on the complex interplay between stress and physiological systems and contribute to the broader understanding of stress-related diseases.


Subject(s)
CD8-Positive T-Lymphocytes , Hydrocortisone , Mice , Male , Animals , Mice, Inbred C3H , Leukocytes , Corticosterone , Stress, Psychological , Restraint, Physical
10.
Kidney Blood Press Res ; 49(1): 155-164, 2024.
Article in English | MEDLINE | ID: mdl-38253040

ABSTRACT

INTRODUCTION: Low estimated glomerular filtration rate (eGFR) is associated with an increased risk of arterial stiffness in participants with kidney damage. It is uncertain whether this association is due to eGFR itself or is mediated by the eGFR-associated increases in fasting blood glucose (FBG). METHOD: The cross-sectional study included 865 Japanese participants with decreased kidney function, whose eGFR was less than 90 mL/min/1.73 m2, and recruited individuals who received medical healthcare. The mediating variable was FBG, with eGFR as the independent variable and brachial-ankle pulse wave velocity (baPWV) as the dependent variable. A mediation analysis was used to evaluate the mediating effect of FBG on the association between eGFR and arterial stiffness. RESULTS: The mean age of the participants was 51.69 ± 9.25 years old, with 65.90% individuals being male. The mean values for FBG, eGFR, and baPWV were 5.46 ± 0.79 mmol/L, 68.83 ± 10.05 mL/min/1.73 m2, and 1,423.50 ± 247.78 cm/s, respectively. The mediation analysis revealed that eGFR had a significant direct effect on baPWV (ß = -25.68 95% CI: -46.42, -7.45), and that FBG played a partial mediating role in the indirect effect of eGFR on baPWV (ß = -3.54 95% CI: -11.88, -0.079). Mediation analysis showed that 12.10% of the effect of eGFR on risk of arterial stiffness was mediated through FBG. CONCLUSION: The study indicated that there is a mediating relationship between eGFR and FBG in people with decreased kidney function, which is associated with the risk of arterial stiffness. Therefore, the importance of FBG as a mediator should be acknowledged and taken into consideration.


Subject(s)
Blood Glucose , Glomerular Filtration Rate , Pulse Wave Analysis , Vascular Stiffness , Adult , Female , Humans , Male , Middle Aged , Ankle Brachial Index , Blood Glucose/analysis , Cross-Sectional Studies , East Asian People , Fasting/blood , Japan/epidemiology , Kidney/physiopathology
11.
Nephron ; 148(2): 95-103, 2024.
Article in English | MEDLINE | ID: mdl-37611552

ABSTRACT

BACKGROUND: Primary membranous nephropathy (PMN) is the most common pathological type of nephrotic syndrome in adults. Intrarenal small artery intimal thickening can be observed in most renal biopsies. The purpose of this study was to investigate the association between intrarenal small artery intimal thickening and clinicopathological features and prognosis in PMN patients. METHODS: Data were continuously collected from patients who were diagnosed with PMN in Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University) from 2008 to 2021 for a retrospective cohort study. Regression analysis and survival analysis were used to analyze the relationship between intrarenal small artery intimal thickening and renal prognosis in PMN patients. RESULTS: 300 PMN patients were enrolled in this study, including 165 patients (55%) with intrarenal small artery intimal thickening. Patients with intimal thickening were older, with higher BMI, systolic blood pressure and diastolic blood pressure, serum uric acid, a higher proportion of hypertension, acute kidney injury, nephrotic syndrome, more urine protein, and lower eGFR. Multivariate Cox regression analysis showed that after adjusting for age, gender, hypertension, BMI, urine protein, eGFR, and the use of ACEI/ARB and hormone immunosuppressants, intimal thickening was a risk factor for renal prognosis in PMN patients (HR = 3.68, 95% CI 1.36-9.96, p < 0.05). Kaplan-Meier survival curve analysis showed that the incidence of reaching the renal composite outcome was higher in the intimal thickening group (p < 0.05). CONCLUSION: The prognosis of PMN patients with intrarenal small artery intimal thickening is worse, so early intervention is very important for these patients.


Subject(s)
Glomerulonephritis, Membranous , Hypertension , Nephrotic Syndrome , Adult , Humans , Retrospective Studies , Angiotensin Receptor Antagonists , Uric Acid , Angiotensin-Converting Enzyme Inhibitors , Arteries , Prognosis
12.
Cell Mol Gastroenterol Hepatol ; 17(3): 361-381, 2024.
Article in English | MEDLINE | ID: mdl-38092311

ABSTRACT

BACKGROUND & AIMS: A long immune-tolerant (IT) phase lasting for decades and delayed HBeAg seroconversion (HBe-SC) in patients with chronic hepatitis B (CHB) increase the risk of liver diseases. Early entry into the immune-active (IA) phase and HBe-SC confers a favorable clinical outcome with an unknown mechanism. We aimed to identify factor(s) triggering IA entry and HBe-SC in the natural history of CHB. METHODS: To study the relevance of gut microbiota evolution in the risk of CHB activity, fecal samples were collected from CHB patients (n = 102) in different disease phases. A hepatitis B virus (HBV)-hydrodynamic injection (HDI) mouse model was therefore established in several mouse strains and germ-free mice, and multiplatform metabolomic and bacteriologic assays were performed. RESULTS: Ruminococcus gnavus was the most abundant species in CHB patients in the IT phase, whereas Akkermansia muciniphila was predominantly enriched in IA patients and associated with alanine aminotransferase flares, HBeAg loss, and early HBe-SC. HBV-HDI mouse models recapitulated this human finding. Increased cholesterol-to-bile acids (BAs) metabolism was found in IT patients because R gnavus encodes bile salt hydrolase to deconjugate primary BAs and augment BAs total pool for facilitating HBV persistence and prolonging the IT course. A muciniphila counteracted this activity through the direct removal of cholesterol. The secretome metabolites of A muciniphila, which contained small molecules structurally similar to apigenin, lovastatin, ribavirin, etc., inhibited the growth and the function of R gnavus to allow HBV elimination. CONCLUSIONS: R gnavus and A muciniphila play opposite roles in HBV infection. A muciniphila metabolites, which benefit the elimination of HBV, may contribute to future anti-HBV strategies.


Subject(s)
Clostridiales , Hepatitis B, Chronic , Animals , Humans , Mice , Akkermansia , Cholesterol , Hepatitis B e Antigens , Gastrointestinal Microbiome
13.
Oral Dis ; 30(1): 3-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36825434

ABSTRACT

Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.


Subject(s)
Sialorrhea , Sjogren's Syndrome , Mice , Animals , Humans , Tight Junctions/metabolism , Tight Junctions/pathology , Sjogren's Syndrome/pathology , Endothelial Cells , Salivary Glands/pathology , Saliva/metabolism , Submandibular Gland/metabolism
14.
STAR Protoc ; 4(4): 102592, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37742173

ABSTRACT

There are numerous established techniques for isolating hepatic myeloid cells; however, preserving their phenotypic and functional characteristics can be challenging. We present a straightforward and efficient method to isolate hepatic myeloid cells, including Kupffer cells and lymphocyte antigen 6 complex, locus C+ (Ly6C+) monocytes/macrophages. The procedure involves perfusion of the liver with collagenase and purification with immunomagnetic particles. This protocol ensures the isolation of large quantities of purified, viable, and functional cells without influencing their physiological characteristics. For complete details on the use and execution of this protocol, please refer to Wu et al. (2019).1.


Subject(s)
Hepatocytes , Liver , Mice , Animals , Flow Cytometry , Kupffer Cells
15.
Zool Stud ; 62: e25, 2023.
Article in English | MEDLINE | ID: mdl-37533557

ABSTRACT

Abscondita cerata is the most abundant and widely distributed endemic firefly species in Taiwan and is considered a key environmental and ecological indicator organism. In this study, we report the first long-read genome sequencing of Abs. cerata sequenced by Nanopore technology. The draft genome size, 967 Mb, was measured through a hybrid approach that consisted of assembling using 11.25-Gb Nanopore long reads and polishing using 9.47-Gb BGI PE100 short reads. The drafted genome was assembled into 4,855 contigs, with the N50 reaching 325.269 kb length. The assembled genome was predicted to possess 55,206 protein-coding genes, of which 20,862 (37.78%) were functionally annotated with public databases. 47.11% of the genome sequences consisted of repeat elements; among them DNA transposons accounted for the largest proportion (26.79%). A BUSCO (Benchmarking Universal Single Copy Orthologs) evaluation demonstrated that the genome and gene completeness were 84.8% and 79%, respectively. The phylogeny constructed using 1,792 single copy genes was consistent with previous studies. The comparative transcriptome between adult male head and lantern tissues revealed (1) the vision of Abs. cerata is primarily UV-sensitive to environmental twilight, which determines when it begins its nocturnal activity, (2) the major expressed OR56d receptor may be correlated to suitable humidity sensing, and (3) Luc1-type luciferase is responsible for Abs. cerata's luminescent spectrum.

16.
Chin Med J (Engl) ; 136(21): 2596-2608, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37052137

ABSTRACT

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS. METHODS: SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement. RESULTS: SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3ß (p-GSK-3ß)/GSK-3ß, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3ß/GSK-3ß, and Slug and increased ZO-1 expression. CONCLUSION: Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3ß/Slug pathway-mediated ZO-1 expression.


Subject(s)
Exosomes , MicroRNAs , Sjogren's Syndrome , Xerostomia , Mice , Animals , Humans , Sjogren's Syndrome/therapy , Proto-Oncogene Proteins c-akt/metabolism , Tight Junctions/metabolism , Glycogen Synthase Kinase 3 beta , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/metabolism , Exosomes/metabolism , Phosphatidylinositol 3-Kinase , MicroRNAs/genetics
17.
Sci Total Environ ; 879: 163068, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36965724

ABSTRACT

With the COVID-19 pandemic, the use of disinfectants has grown significantly around the world. Triclosan (TCS), namely 5-chloro-2-(2,4-dichlorophenoxy) phenol or 2,4,4'-trichloro-2'-hydroxydiphenyl ether, is a broad-spectrum, lipophilic, antibacterial agent that is extensively used in multifarious consumer products. Due to the widespread use and bioaccumulation, TCS is frequently detected in the environment and human biological samples. Accumulating evidence suggests that TCS is considered as a novel endocrine disruptor and may have potential unfavorable effects on human health, but studies on the toxic effect mediated by TCS exposure as well as its underlying mechanisms of action are relatively sparse. Therefore, in this review, we attempted to summarize the potential detrimental effects of TCS exposure on human reproductive health, liver function, intestinal homeostasis, kidney function, thyroid endocrine, and other tissue health, and further explore its mechanisms of action, thereby contributing to the better understanding of TCS characteristics and safety. Moreover, our work suggested the need to further investigate the biological effects of TCS exposure at the metabolic level in vivo.


Subject(s)
COVID-19 , Triclosan , Humans , Triclosan/toxicity , Triclosan/metabolism , Pandemics , Phenol , Anti-Bacterial Agents
18.
Oral Dis ; 29(5): 2086-2095, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35472254

ABSTRACT

OBJECTIVES: Tight junctions (TJs) are involved in the regulation of salivary secretion via paracellular pathway. Botulinum toxin type A (BTXA) is widely used for the treatment of hypersecretion diseases such as sialorrhea. This study aimed to investigate the role of TJs in BTXA-inhibited secretion of the submandibular gland (SMG). MATERIALS AND METHODS: BTXA was injected into the SMGs of rats, and the same amount of saline was injected as a control. Western blot, real-time PCR, and immunofluorescence staining were used to detect the expression and distribution of TJ proteins. Paracellular permeability was evaluated using the transepithelial electrical resistance (TER) measurements and fluorescent tracer detection in BTXA-stimulated SMG-C6 cells. RESULTS: BTXA injection into the SMGs of rats led to increased expression of claudin (Cldn) -1 and Cldn3. Immunofluorescence staining showed no significant changes in the distribution of TJ proteins. In vitro, BTXA increased the TER values and significantly reduced the permeability of fluorescent tracer, suggesting that BTXA decreased the paracellular permeability. The expression levels of Cldn1, Cldn3, and Cldn4 were upregulated after BTXA treatment. CONCLUSION: The expression of TJ proteins changed in both animal models and SMG-C6 cells after BTXA treatment, which may contribute to the inhibition of salivary secretion.


Subject(s)
Botulinum Toxins, Type A , Tight Junctions , Rats , Animals , Tight Junctions/physiology , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/metabolism , Salivation , Submandibular Gland/metabolism
20.
J Transl Med ; 20(1): 484, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273126

ABSTRACT

BACKGROUND: Evidence about the relationship between triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-C) ratio and prediabetes (Pre-DM) in Chinese non-obese people with a normal range of low-density lipoprotein cholesterol (LDL-c) is limited. Therefore, the present study was undertaken to explore the link of the TG/HDL-C ratio on Pre-DM among non-obese Chinese population with a normal range of LDL-c. METHODS: This study was a cross-sectional study that enrolled 153163 non-obese individuals with a normal range of low-density lipoprotein cholesterol in a Chinese hospital from January 2010 to December 2014. Logistic regression model, generalized additive model (GAM), smooth curve fitting and a series of sensitivity analyses was used to evaluate the association between TG/HDL-C ratio and Pre-DM. RESULT: The prevalence of Pre-DM was 9.77%.The median TG/HDL-C ratio was 0.671 (interquartile range, 0.468-1.010). After adjusting covariates, the results showed that TG/HDL-C ratio was positively associated with Pre-DM ((OR = 1.185, 95%CI 1.145-1.226). In addition, the TG/HDL-C ratio level has a non-linear relationship with the incidence of Pre-DM, in which the inflection point was 1.617. The effect sizes (OR) on the left and right sides of the inflection point were 1.312 (95%CI 1.242-1.386) and 0.980 (95%CI 0.898-1.070), respectively. And the sensitive analysis demonstrated the robustness of the results. Subgroup analysis showed a stronger association between TG/HDL-C ratio and Pre-DM in females and the population with 30 years < age < 40 years, 18.5 kg/m2 < body mass index < 24 kg/m2, and ALT < 40U/L. CONCLUSION: This study demonstrates a positive and non-linear relationship between TG/HDL-C ratio and Pre-DM in Chinese non-obese people with a normal range of low-density lipoprotein cholesterol. TG/HDL-C ratio is strongly related to Pre-DM when TG/HDL-C ratio is less than 1.617. It makes sense to reduce the TG/HDL-C ratio level below the inflection point from a treatment perspective.


Subject(s)
Prediabetic State , Female , Humans , Adult , Cholesterol, HDL , Cholesterol, LDL , Triglycerides , Cross-Sectional Studies , Reference Values , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...