Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1218267, 2023.
Article in English | MEDLINE | ID: mdl-37744386

ABSTRACT

Objective: To investigate the mechanism of RNA-binding protein hnRNP A1 in mouse hippocampal neurons (HT22) on glycolysis. Methods: RIP and CLIP-qPCR were performed by HT22 in vitro to observe the mechanism of hnRNP A1 regulating the expression of key proteins in glycolysis. The RNA binding domain of hnRNP A1 protein in HT22 was inhibited by VPC-80051, and the effect of hnRNP A1 on glycolysis of HT22 was observed. Lentivirus overexpression of hnRNP A1 was used to observe the effect of overexpression of hnRNP A1 on glycolysis of Aß25-35-injured HT22. The expression of hnRNP A1 in brain tissues of wild-type mice and triple-transgenic (APP/PS1/Tau) AD mice at different ages was studied by Western blot assay. Results: The results of RIP experiment showed that hnRNP A1 and HK1 mRNA were significantly bound. The results of CLIP-qPCR showed that hnRNP A1 directly bound to the 2605-2821 region of HK1 mRNA. hnRNP A1 inhibitor can down-regulate the expression of HK1 mRNA and HK1 protein in HT22 cells. Overexpression of hnRNP A1 can significantly reduce the toxic effect of Aß25-35 on neurons via the hnRNP A1/HK1/ pyruvate pathway. In addition, inhibition of hnRNP A1 binding to amyloid precursor protein (APP) RNA was found to increase Aß expression, while Aß25-35 also down-regulated hnRNP A1 expression by enhancing phosphorylation of p38 MAPK in HT22. They interact to form bidirectional regulation, further down-regulating the expression of hnRNP A1, and ultimately aggravating glycolytic dysfunction. Protein immunoblotting showed that hnRNP A1 decreased with age in mouse brain tissue, and the decrease was greater in AD mice, suggesting that the decrease of hnRNP A1 may be a predisposed factor in the pathogenesis of AD.

2.
Molecules ; 27(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235282

ABSTRACT

The catalytic removal of C2H2 by Cu2O was studied by investigating the adsorption and partial oxidation mechanism of C2H2 on both perfect (stoichiometric) and CuCUS-defective Cu2O (111) surface models using density functional theory calculations. The chemisorption of C2H2 on perfect and defective surface models needs to overcome the energy barrier of 0.70 and 0.81 eV at 0 K. The direct decomposition of C2H2 on both surface models is energy demanding with the energy barrier of 1.92 and 1.62 eV for the perfect and defective surface models, respectively. The H-abstractions of the chemisorbed C2H2 by a series of radicals including H, OH, HO2, CH3, O, and O2 following the Langmuir−Hinshelwood mechanism have been compared. On the perfect Cu2O (111) surface model, the activity order of the adsorbed radicals toward H-abstraction of C2H2 is: OH > O2 > HO2 > O > CH3 > H, while on the defective Cu2O (111) surface model, the activity follows the sequence: O > OH > O2 > HO2 > H > CH3. The CuCUS defect could remarkably facilitate the H-abstraction of C2H2 by O2. The partial oxidation of C2H2 on the Cu2O (111) surface model tends to proceed with the chemisorption process and the following H-abstraction process rather than the direct decomposition process. The reaction of C2H2 H-abstraction by O2 dictates the C2H2 overall reaction rate on the perfect Cu2O (111) surface model and the chemisorption of C2H2 is the rate-determining step on the defective Cu2O (111) surface model. The results of this work could benefit the understanding of the C2H2 reaction on the Cu2O (111) surface and future heterogeneous modeling.

3.
ACS Omega ; 6(35): 22525-22536, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514225

ABSTRACT

This work reports the thermochemistry calculations for solid-phase periodic models of ten popular transition metal-based species. These model structures were refined to stable geometry by geometric optimization along with calculating the thermodynamic properties including enthalpy, entropy, heat capacity at constant pressure, and Gibbs free energy by DMol3 package via first-principles ab initio calculations. The temperature-dependent thermochemistry values were converted to a NASA seven-polynomial format. The behavior of different thermodynamic parameters based on temperature was investigated and their comparative analysis was done. A higher number of atoms tends to show higher thermodynamic values. Moreover, these thermodynamic values agree reasonably well with previously reported experimental and computational values. Metal copper shows higher thermodynamic values as compared to its oxide. The thermodynamic properties of lanthanum-based oxides have been newly calculated through the ab initio method. Amorphous structures reveal higher thermodynamic values compared to their crystalline counterparts. A comparison between different transition metal-based species gives a better understanding of the different crystalline structures and their surface sites. These calculated thermodynamic data and polynomials can be used for a variety of thermodynamic calculations and kinetic modeling.

4.
Materials (Basel) ; 12(7)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965615

ABSTRACT

Thermal control materials are employed to adjust the temperature of a spacecraft operating in deep space. The spectral emissivity is a crucial factor in evaluating the thermal radiative properties of such materials. An apparatus, composed of a Fourier transform infrared spectrometer (FTIR), a sample cooling chamber and a mechanical modulation system was demonstrated to measure low temperature infrared spectral emissivity under vacuum. The mechanical modulation system, which includes a chopper and a lock-in amplifier, is employed to reduce the interference of background radiation during measurements. The limitation of the Fourier transform frequency on the chopper frequency can be eliminated by setting the FTIR on step-scan mode. The apparatus is separated into two parts and evacuated by different pumps. In this study, a high quality emission spectrum of a sample is measured by the apparatus. The spectral emissivity of thermal control materials are obtained in the wavelength range of 8 to 14 µm at 173 and 213 K. The combined standard uncertainty of the apparatus is 3.30% at 213 K.

5.
RSC Adv ; 9(5): 2666-2672, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-35520516

ABSTRACT

AuPd nanoparticle-decorated graphene-coated ZnO nanorod (ZNR) array electrodes (ZNR@Gr/AuPd) were synthesized via electrostatic self-assembly followed by solution reduction methods. The morphologies of ZNR@Gr/AuPd were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), which indicated that ZNR was well-coated by graphene with 3-5 layers and uniformly decorated with AuPd nanoparticles (about 5 nm). UV-Vis diffuse reflectance and photoluminescence spectra were obtained to analyze the optical properties. The photoelectrochemical (PEC) properties were also evaluated; the results indicated that the photocurrent density was 2.27 mA cm-2 at 0.8 V versus Ag/AgCl, which was 7.1 times that of bare ZNR. The sample also displayed enhanced PEC stability (91.3%), which prevented photocorrosion. Finally, a proposed PEC mechanism of ZNR@Gr/AuPd was illustrated to explain the charge transfer and the role of graphene and AuPd nanoparticles in the improvement of PEC performance and stability. The ZNR@Gr/AuPd electrode shows excellent PEC performance and stability, exhibiting promising potential in the generation of H2.

6.
Sci Bull (Beijing) ; 64(9): 625-633, 2019 May 15.
Article in English | MEDLINE | ID: mdl-36659631

ABSTRACT

Efficient mixing and thermal control are important in the flow reactor for obtaining a high product yield and selectivity. Here, we report a heterogeneous chemical kinetic study of propene oxidation within a newly designed catalytic jet-stirred reactor (CJSR). To better understand the interplay between the catalytic performances and properties, the CuO thin films have been characterized and the adsorbed energies of propene on the adsorbed and lattice oxygen were calculated using density functional theory (DFT) method. Structure and morphology analyses revealed a monoclinic structure with nano-crystallite size and porous microstructure, which is responsible for holding an important quantity of adsorbed oxygen. The residence time inside the flow CJSR (1.12-7.84 s) makes it suitable for kinetic study and gives guidance for scale-up. The kinetic study revealed that using CJSR the reaction rate increases with O2 concentration that is commonly not achievable for catalytic flow tube reactor, whereas the reaction rate tends to increase slightly above 30% of O2 due to the catalyst surface saturation. Moreover, DFT calculations demonstrated that adsorbed oxygen is the most involved oxygen, and it has found that the pathway of producing propene oxide makes the reaction of C3H6 over CuO surface more likely to proceed. Accordingly, these findings revealed that CJSR combined with theoretical calculation is suitable for kinetic study, which can pave the way to investigate the kinetic study of other exhaust gases.

7.
RSC Adv ; 8(2): 885-894, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538990

ABSTRACT

A graphene coated hexagonal ZnO (HZO@Gr) with enhanced activity in photocatalysis was synthesized. However, the photoinduced charge transfer behavior and the beneficial role of graphene in promoting photocatalytic reactions have not been sufficiently investigated experimentally. In this paper, the surface potentials of the ±(0001)-polar plane of HZO (Zn-polar plane and O-polar plane), graphene, graphene/Zn-polar plane and graphene/O-polar plane were measured using Kelvin probe force microscopy (KPFM). On the basis of the KPFM results, the respective Fermi levels were calculated and the internal electric field (IEF) of HZO was confirmed. Taking the IEF of HZO into consideration, the three-dimensional band diagrams of the HZO@Gr composites in methyl blue (MB) solution in the dark and under UV-visible irradiation after equilibrium were proposed. Accordingly, it is found that there could emerge different interactions between graphene and HZO at the ±(0001)-polar plane of HZO. Furthermore, the photogenerated holes and electrons tend to migrate to opposite directions. With the participation of graphene and IEF, the composites show a decrease in possibility of charge recombination. As a result, the active groups, namely ˙OH and ˙O2 - radicals, could be mainly generated at/near the O-polar plane and Zn-polar plane, respectively. This work can serve as a supplemental explanation of the charge transfer during the photocatalytic process at the polar ZnO/graphene composite surface.

8.
Molecules ; 19(12): 21335-49, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25529020

ABSTRACT

The study focused on the structural sensitivity of lignin during the phosphoric acid-acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (ß-O-4, ß-ß, 4-O-5, ß-1, 5-5, α-O-4, and ß-5) of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and ß-O-4 linkage tend to break during the phosphoric acid-acetone pretreatment process. Then α-O-4 phosphorylation and ß-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of ß-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of ß-O-4 in the H2PO4- functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.


Subject(s)
Acetone/chemistry , Lignin/chemistry , Phosphoric Acids/chemistry , Carbohydrate Conformation , Hydrolysis , Models, Chemical , Phosphorylation , Quantum Theory , Solutions , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...