Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 30: 184-197, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36156907

ABSTRACT

The success of the two mRNA vaccines developed by Moderna and BioNTech during the COVID-19 pandemic increased research interest into the application of mRNA technologies. Compared with the canonical linear mRNA used in these vaccines, circular mRNA has been found to mediate more potent and durable protein expression and demands a simpler manufacturing procedure. However, the application of circular mRNA is still at the initiation stage, and proof of concept for its use as a future medicine or vaccine is required. In the current study, we established a novel type of circular mRNA, termed cmRNA, based on the echovirus 29-derived internal ribosome entry site element and newly designed homology arms and RNA spacers. Our results demonstrated that this type of circular mRNA could mediate strong and durable expression of various types of proteins, compared with typical linear mRNA. Moreover, for the first time, our study demonstrated that direct intratumoral administration of cmRNA encoding a mixture of cytokines achieved successful modulation of intratumoral and systematic anti-tumor immune responses and enhanced anti-programmed cell death protein 1 (PD-1) antibody-induced tumor repression in a syngeneic mouse model. This novel circular mRNA platform is thereby suitable for direct intratumoral administration for cancer therapy.

2.
Int J Gen Med ; 15: 4635-4647, 2022.
Article in English | MEDLINE | ID: mdl-35535142

ABSTRACT

Background: Spindle and kinetochore-associated complex subunit 3 (SKA3) plays important roles in promoting the migration and the invasion of various human cancer cells. There are a few studies on SKA3 in lung adenocarcinoma (LUAD), but the in-depth analysis of the expression of SKA3 and the correlated possible immune mechanism of SKA3 in LUAD are not clear. Methods: In our study, the expression and survival data of SKA3 were analyzed in LUAD using TIMER, Oncomine, UALCAN, cBioPortal, LinkedOmics, Human Protein Atlas, and Kaplan-Meier plotter. Then, quantitative PCR was used to verify the expression differences of SKA3 between LUAD tissues of mice and the normal tissues. Results: We established that the expression of SKA3 in the LUAD group was remarkably higher than that in the normal group. Additionally, high SKA3 expression was linked to poorer survival in LUAD. Moreover, SKA3 expression had a remarkable negative correlation with the immune infiltration of B cells, macrophages, and CD4+ T cells. SKA3 was markedly negatively related to the immune type biomarkers of T cells and B cells in LUAD. The elevated expression of SKA3 with LUAD in enriched B cells, CD4+ T cells, CD8+ T cells, macrophages and Treg cells had worse prognosis, respectively. Functional network analysis showed that SKA3 regulated the mitotic cell cycle, mitosis, chromosome segregation and cell division via pathways. Conclusion: In summary, our study suggested that SKA3 was highly expressed in LUAD and SKA3 might function as a prognostic biomarker in LUAD. Besides, SKA3 may be a candidate oncogene, which correlates with poor prognosis and immune infiltration in lung adenocarcinoma.

3.
iScience ; 24(11): 103177, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34712915

ABSTRACT

The mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in cellular innate immunity, metabolism, and senescence. FK506-binding protein 12 (FKBP12) inhibits mTOR kinase activity via direct association. The FKBP12-mTOR association can be strengthened by the immunosuppressant rapamycin, but the underlying mechanism remains elusive. We show here that the FKBP12-mTOR association is tightly regulated by an acetylation-deacetylation cycle. FKBP12 is acetylated on the lysine cluster (K45/K48/K53) by CREB-binding protein (CBP) in mammalian cells in response to nutrient treatment. Acetyl-FKBP12 associates with CBP acetylated Rheb. Rapamycin recruits SIRT2 with a high affinity for FKBP12 association and deacetylation. SIRT2-deacetylated FKBP12 then switches its association from Rheb to mTOR. Nutrient-activated mTOR phosphorylates IRF3S386 for the antiviral response. In contrast, rapamycin strengthening FKBP12-mTOR association blocks mTOR antiviral activity by recruiting SIRT2 to deacetylate FKBP12. Hence, on/off mTOR activity in response to environmental nutrients relies on FKBP12 acetylation and deacetylation status in mammalian cells.

4.
Cell Commun Signal ; 18(1): 148, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32912229

ABSTRACT

BACKGROUND: LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. METHODS: LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro, colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo, metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. RESULTS: LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. CONCLUSIONS: LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity. Video abstract.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Amino Acid Oxidoreductases/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/pathology , Disease Progression , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Transcriptional Activation , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...