Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 367-372, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710520

ABSTRACT

Toll-like receptor 2 (TLR2) is a pattern recognition receptor expressed on the surface of leukocytes. Various ligands can activate or inhibit TLR2, therefore regulating the inflammation and apoptosis of immune cells. Mycobacterium tuberculosis (MTB) typically parasitizes macrophages. Further, after infecting the body, MTB can interact with TLR2 on the surface of various immune cells, including macrophages, leading to the release of cytokines that can affect the state and proliferation of MTB in the body. Additional research is needed to understand the polymorphism of TLR2 at the molecular level. Current studies indicate that the majority of TLR2 polymorphisms are not associated with susceptibility to MTB infection. This review provides an overview of the researches related to TLR2 and its ligands, the immune regulation activities of TLR2 following MTB infection, and the association of TLR2 polymorphism with susceptibility to MTB.


Subject(s)
Mycobacterium tuberculosis , Toll-Like Receptor 2 , Tuberculosis , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Polymorphism, Genetic , Animals , Genetic Predisposition to Disease
2.
Cell Biochem Biophys ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430410

ABSTRACT

To investigate the effects and mechanisms of Mycobacterium avium MAV-5183 protein on apoptosis in mouse Ana-1 macrophages. A pET-21a-MAV-5183 recombinant plasmid was constructed. The recombinant MAV-5183 protein was cloned, expressed, purified, and identified using an anti-His-tagged antibody. Rabbits were immunized to obtain antiserum, and its potency and immunoreactivity were assessed through WB. Mouse Ana-1 macrophages were incubated with varying concentrations of MAV-5183 protein. Flow cytometry, following ANNEXIN V-FITC/PI double staining, detected apoptosis. Western Blot analysis was conducted to identify apoptosis-related molecules Caspase-9/8/3 and vesicle-related molecules ASC, NLRP3, and Cleaved-casp1. ELISA measured TNF-α and IL-6 levels in the culture supernatant. LDH activity and ROS levels were analyzed separately. RT-qPCR measured mRNA levels of Caspase-9/8/3, ASC, NLRP3, Caspase-1, IL-1ß, Bax, MAPK-p38, Bcl-2, TNF-α, and IL-6. MAV-5183 protein was successfully cloned, purified, and identified. In in vitro studies on Ana-1 macrophages, MAV-5183 protein increased the expression of Caspase-9/8/3, ASC, NLRP3 (P < 0.01), induced ROS secretion (P < 0.05), and promoted inflammatory cytokine secretion (TNF-α, IL-6, P < 0.0001); however, it did not significantly affect LDH (P > 0.05). MAV-5183 also induced apoptosis in Ana-1 macrophages (P < 0.05). RT-qPCR results indicated a significant increase in mRNA expression of Caspase-9/8/3, ASC, NLRP3, TNF-α, IL-6, MAPK-p38, and pro-apoptotic factor Bax (P < 0.01), with no significant effect on Bcl-2 and IL-1ß mRNA (P > 0.05). The data indicate that MAV-5183 induces macrophage apoptosis through a caspase-dependent pathway and promotes inflammatory cytokine secretion via ROS.

3.
J Control Release ; 366: 798-811, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184236

ABSTRACT

Oral cancer is a disease with high morbidity and mortality worldwide and greatly impacts the quality of life, especially in patients with advanced stages. Photodynamic therapy (PDT) is one of the most effective clinical treatments for oral cancers. However, most clinically applied photosensitizers have several deficiencies, including oxygen dependence, poor aqueous solubility, and a lack of tumor-targeting ability. Herein, the carrier-free multifunctional Sorafenib (Sor), chlorin e6 (Ce6), and Fe3+ self-assembly co-delivery nanoparticles (Sor-Ce6 NPs) were constructed via combining a ferroptosis inducer Sor and a photosensitizer Ce6 for synergetic therapy. The as-synthesized Sor-Ce6 NPs presented excellent colloidal stability and water dispersity with good in vivo tumor-targeting ability. More significantly, the low dose of Sor-Ce6 NPs had little dark toxicity but produced significantly enhanced ROS and supplied O2 sustainably to increase phototoxicity through ferroptosis pathway. Notably, the Sor-Ce6 NPs showed significantly higher in vitro and in vivo anti-tumor efficacy than the Sor/Ce6 mixture due to the improvement of cellular uptake and the incorporation of foreign Fe ions in the system, which also confer the T1 magnetic resonance-guided imaging ability to the formed Sor-Ce6 NPs. Our study demonstrates a promising self-assembled strategy for overcoming hypoxia-related PDT resistance for oral cancer treatment.


Subject(s)
Chlorophyllides , Ferroptosis , Mouth Neoplasms , Nanoparticles , Photochemotherapy , Porphyrins , Humans , Sorafenib , Quality of Life , Mouth Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Cell Line, Tumor
4.
Cytokine ; 175: 156481, 2024 03.
Article in English | MEDLINE | ID: mdl-38159468

ABSTRACT

Murine Natural Killer cells were cultivated in vitro to isolate NK-derived exosomes. Subsequent quantification via qPCR confirmed enrichment of miR-1249-3p. Ana-1 murine macrophages were cultured in vitro and subsequently inoculated with Mycobacterium tuberculosis (MTB) strain H37Rv. NK-exo and NK-exo miR-1249-3p were separately applied to the infection model, followed by immunological assays conducted post-48-hour co-culture. Western blot analyses corroborated that NK-exo exhibited exosomal marker proteins Granzyme A (GzmA), Granzyme B (GzmB), and Perforin (PFN), alongside a notable enrichment of miR-1249-3p. Functionally, NK-exo augmented the expression levels of Caspase-9,-8, and -3, as well as PARP, while attenuating the expression of NLRP3, ASC, and Cleaved-Caspase-1. Furthermore, qPCR demonstrated an up-regulation of Caspase-9, -8, and -3, along with pro-apoptotic factors Bax and Bid, and a concomitant down-regulation of the anti-apoptotic factor Bcl-2. The expression levels of inflammatory markers ASC, NLRP3, Cleaved-Caspase-1, and IL-1ß were concomitantly decreased. ELISA findings indicated diminished levels of TNF-α and ROS secretion. NK-exo miR-1249-3p specifically targeted and attenuated the expression of SKOR-1, engendering up-regulation of apoptosis-associated proteins and down-regulation of inflammation-related proteins, consequently affecting cellular fate.Our empirical evidence substantiates that NK-exo induces macrophage apoptosis, thereby mitigating MTB survival. Furthermore, NK-exo miR-1249-3p directly targets and inhibits SKOR-1 expression, leading to macrophage apoptosis and consequently hampering the proliferation of MTB. The data implicate the potential therapeutic relevance of NK-exo and miR-1249-3p in managing drug-resistant tuberculosis.


Subject(s)
Exosomes , MicroRNAs , Mycobacterium tuberculosis , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 9/metabolism , Mycobacterium tuberculosis/metabolism , Exosomes/metabolism , Macrophages/metabolism , MicroRNAs/metabolism
5.
Front Zool ; 20(1): 41, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110949

ABSTRACT

BACKGROUND: As an important catecholamine neurotransmitter in invertebrates and vertebrates, dopamine plays multiple roles in the life of the honey bee. Dopamine receptors (DA), which specifically bind to dopamine to activate downstream cascades, have been reported to be involved in honey bee reproduction, division of labour, as well as learning and motor behaviour. However, how dopamine receptors regulate honey bee behavior remains uninvestigated. RESULTS: The expression level of Amdop2 in the brain increased with the age of worker bees, which was just the opposite trend of ame-let-7. Inhibition of ame-let-7 through feeding an inhibitor upregulated Amdop2 expression; conversely, overexpression of ame-let-7 through a mimic downregulated Amdop2. Moreover, knockdown of Amdop2 in forager brain led to significantly higher sucrose responsiveness, which is similar to the phenotype of overexpression of ame-let-7. Finally, we confirmed that ame-let-7 directly targets Amdop2 in vitro by a luciferase reporter assay. CONCLUSIONS: ame-let-7 is involved in the dopamine receptor signaling pathway to modulate the sucrose sensitivity in honey bees. Specifically, it down-regulates Amdop2, which then induces higher responses to sucrose. These results further unraveled the diverse mechanisms of the dopamine pathway in the regulation of insect behavior.

6.
Cytokine ; 172: 156405, 2023 12.
Article in English | MEDLINE | ID: mdl-37883839

ABSTRACT

BACKGROUND: Toll-like receptor 2 (TLR2) is a crucial factor in the development of tuberculosis. However, no studies have explored the association between TLR2 polymorphisms and tuberculosis susceptibility. OBJECTIVES: This study aimed to explore the correlation between tuberculosis susceptibility and TLR2 polymorphisms (rs3804099, rs3804100, rs1898830, rs5743708, rs121917864, and (-196-174) del). METHODS: All relevant online databases including PubMed, CNKI, WANFANG DATA, and METSTR-FMRS were systematically searched. STATA17.0 (Stata Corp LP, College Station, Texas, USA) was used. RESULTS: A total of 37 studies, covering six polymorphisms and comprising 9,474 cases and 10,295 controls, were included in this analysis. rs3804099(C vs T: OR = 1.00, 95 % CI: 0.93-1.08, CC + TC vs TT: OR = 1.04, 95 % CI: 0.98-1.10), rs3804100 (C vs T: OR = 1.19, 95 % CI: 0.93-1.07, CC + TC vs TT: OR = 0.97, 95 % CI: 0.89-1.06), rs1898830(G vs A: OR = 0.90, 95 % CI: 0.81-1.00, GG + AG vs AA: OR = 0.87, 95 % CI: 0.67-1.12), (-196 ∼174) del polymorphism (Del vs Ins: OR = 0.93,95 % CI: 0.76-1.14, DD + DI vs II: OR = 0.92,95 % CI: 0.72-1.17). CONCLUSIONS: This study indicated that only the TLR2 rs5743708 polymorphism exhibited a significant association with a higher tuberculosis risk, while TLR2 rs3804099, rs3804100, rs1898830, rs121917864, and (-196-174) del polymorphisms were not associated with tuberculosis susceptibility.


Subject(s)
Toll-Like Receptor 2 , Tuberculosis , Humans , Toll-Like Receptor 2/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic/genetics , Tuberculosis/genetics , Polymorphism, Single Nucleotide/genetics
7.
Front Vet Sci ; 10: 1250381, 2023.
Article in English | MEDLINE | ID: mdl-37745207

ABSTRACT

Fleas represent a group of paramount medical significance, subsisting on blood and acting as vectors for an array of naturally occurring diseases. These pathogens constitute essential elements within the plague biome, exerting deleterious effects on both human and livestock health. In this study, we successfully assembled and sequenced the whole mitochondrial genome of Frontopsylla spadix and Neopsylla specialis using long-range PCR and next-generation sequencing technologies. The mitogenomes of F. spadix and N. specialis both have 37 genes with full lengths of 15,085 bp and 16,820 bp, respectively. The topology of the phylogenetic tree elucidates that species F. spadix is clustered in a branch alongside other members of the family Leptopsyllidae, whereas species N. specialis is a sister taxon to Dorcadia ioffi and Hystrichopsylla weida qinlingensis. It also suggests that Pulicidae form a monophyletic clade, Ctenopthalmidae, Hystrichopsyllidae, Vermipsyllidae form a sister group to Ceratophyllidae/Leptopsyllidae group. The mitochondrial genomes of F. spadix and N. specialis were sequenced for the first time, which will contribute to a more comprehensive phylogenetic analysis of the Siphonaptera order. The foundation for subsequent systematic studies, and molecular biology of fleas was established.

8.
Insect Sci ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37751529

ABSTRACT

During the pupal-adult eclosion process of holometabolous insects, the old cuticle is shed and replaced by a completely different new cuticle that requires tanning and expansion, along with extensive extracellular matrix (ECM) remodeling. In vertebrates, matrix metalloproteinases (MMPs), a class of zinc-dependent endopeptidases, play key roles in regulating the ECM that surrounds cells. However, little is known about these extracellular proteinases available in insects. The small hive beetle (SHB), Aethina tumida, is a widespread invasive parasite of honey bees. In this study, 6 MMP homologs were identified in the SHB genome. RNA interference experiments showed that all 6 AtMmps are not required for the larval-pupal transition, only AtMmp2 was essential for pupal-adult eclosion in SHB. Knockdown of AtMmp2 resulted in eclosion defects and wing expansion failure, as well as mortality within 3 d of adult eclosion. Transcriptomic analysis revealed that knockdown of AtMmp2 significantly increased expression of the Toll and Imd pathways, chitin metabolism, and cross-linking (such as the pro-phenoloxidase activating cascade pathway and the tyrosine-mediated cuticle sclerotization and pigmentation pathway). These data revealed evolutionarily conserved functions of Mmp2 in controlling adult eclosion and wing expansion, also provided a preliminary exploration of the novel function of regulating Toll and Imd pathways, as well as new insights into how MMPs regulate insect development and defense barriers.

9.
Eur J Med Chem ; 260: 115690, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37619298

ABSTRACT

Heat shock protein 90 (Hsp90), a highly conserved and widely expressed molecular chaperone, is mainly responsible for maintaining the correct folding of client proteins and is closely related to the stability and activation of tumour-related proteins. Hsp90α, the major isoform of Hsp90, can promote tumour cell migration and metastasis, and is abundantly secreted in highly invasive tumours. To date, most pan-Hsp90 inhibitors have been limited in their applications due to high toxicity. Herein, we described the candidate compound X10g based on a proteolysis-targeting chimaera (PROTAC) strategy that potently and selectively degraded Hsp90α. The results showed that X10g inhibited tumours better with lower toxicity in vivo. These findings demonstrate that synthesized selective Hsp90α degrader X10g provides a new strategy for breast cancer therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Biological Transport , HSP90 Heat-Shock Proteins , Proteolysis Targeting Chimera
10.
ACS Omega ; 8(28): 25574-25581, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483237

ABSTRACT

Several anti-human epidermal growth factor receptor 2 (HER2) treatments have improved the landscape of HER2-positive breast cancer (BC) over the past few years; due to the heterogeneity of the disease itself, the drug resistance mechanisms and relapse are still the main issue in HER2-positive BC. Here, we intended to target simultaneous inhibition of both poly ADP-ribose polymerase 1 (PARP1) and cyclin-dependent kinase 12 (CDK12) that have had an impact on this disease up to their implementation in clinical practice. We successfully screened PARP1 inhibitors (PARPis) containing bicyclic tetrahydropyridine pyrimidines with antitumor activity. Most synthesized compounds with various alcohols were more effective at killing tumor cells than olaparib (ola), especially in HER2-positive cancer cells. Among them, compound 9 showed potent inhibitory effects on PARP1 enzymatic activity and the PAR protein level; moreover, the expression of CDK12 was inhibited by compound 9. Overall, compound 9 exhibited a significant antitumor effect by inhibiting DNA damage repair in tumors.

11.
J Drug Target ; 31(4): 411-420, 2023 04.
Article in English | MEDLINE | ID: mdl-36866593

ABSTRACT

Proteolysis-targeting chimaera (PROTAC) has received extensive attention in industry. However, there are still some limitations that hinder its further development. In a previous study, our group first demonstrated that the HSP90 degrader BP3 synthesised by the principle of PROTACs showed therapeutic potential for cancer. However, its application was hindered by its high molecular weight and water insolubility. Herein, we aimed to improve these properties of HSP90-PROTAC BP3 by encapsulating it into human serum albumin nanoparticles (BP3@HSA NPs). The results demonstrated that BP3@HSA NPs showed a uniform spherical shape with a size of 141.01 ± 1.07 nm and polydispersity index < 0.2; moreover, BP3@HSA NPs were more readily taken up by breast cancer cells and had a stronger inhibitory effect in vitro than free BP3. BP3@HSA NPs also demonstrated the ability to degrade HSP90. Mechanistically, the improved inhibitory effect of BP3@HSA NPs on breast cancer cells was related to its stronger ability to induce cell cycle arrest and apoptosis. Furthermore, BP3@HSA NPs improved PK properties and showed stronger tumour suppression in mice. Taken together, this study demonstrated that hydrophobic HSP90-PROTAC BP3 nanoparticles encapsulated by human serum albumin could improve the safety and antitumour efficacy of BP3.


Subject(s)
Breast Neoplasms , Nanoparticles , Animals , Female , Humans , Mice , Albumins , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Carriers/chemistry , Nanoparticles/chemistry , Proteolysis , Serum Albumin, Human/chemistry , HSP90 Heat-Shock Proteins/metabolism
12.
Infect Genet Evol ; 107: 105401, 2023 01.
Article in English | MEDLINE | ID: mdl-36586460

ABSTRACT

Recent studies showed that the distribution of hepatitis B virus (HBV) genotype exhibited geographical and ethnic characteristics. Haikou city is the largest city on Hainan Island that geographically isolated from mainland of China, and is the home of multiple ethnic groups. The aim of the study was to investigate the characteristics of the HBV genotype/subgenotype distribution in Haikou city. HBV DNA was isolated from180 serum samples derived from the Han and Li groups. The HBV genotype was detected by polymerase chain reaction using genotype-specific primers and was further determined by full-length genome sequences. The results revealed that the genotype B (37.2%) and C (62.8%) were the predominant HBV genotypes in Haikou, regardless of ethnic background., Additionally, the genotype distribution was not significantly different regarding ethnicity, sex or level of serum HBV DNA. Moreover, there were multiple subgenotypes circulating in the region. In conclusion, our study revealed the diverse HBV genotypes/subgenotypes in Haikou. These findings provide a preliminary study of the distribution of HBV genotypes circulating on Hainan Island.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , DNA, Viral/genetics , DNA, Viral/analysis , Polymerase Chain Reaction , Genotype , China/epidemiology , Phylogeny
13.
Pest Manag Sci ; 79(1): 37-44, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36054776

ABSTRACT

BACKGROUND: The molting hormone 20-hydroxyecdysone (20E) plays a key role in insect development, metamorphosis, and reproduction. Previous studies have shown that ecdysteroid metabolism is regulated by a series of CYP genes in most of the insect species. However, the roles of these CYP genes in a Coleopteran beetle, Aethina tumida (small hive beetle, SHB) have not yet been explored. RESULTS: In the current study, we identified seven CYP genes (six Halloween genes and one AtCYP18A1 gene) related to 20E metabolism. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed that AtCYP307A1 and AtCYP307B1 were primarily expressed in the embryonic stage and in the cephalothorax of larvae. RNA interference (RNAi) screening revealed that suppression of AtCYP307A1 expression caused a lethal phenotype during the larval-pupal metamorphosis. Furthermore, Hematoxylin and Eosin staining of the integument showed that the RNAi of AtCYP307A1 inhibited the apolysis and degradation of the old cuticle. In addition, silencing of AtCYP307A1 resulted in significant down-regulation of 20E titers and the expression levels of 20E signaling pathway genes. Finally, the AtCYP307A1 RNAi phenotype was rescued by topical application of 20E. CONCLUSION: Our studies suggest that AtCYP307A1 involved in 20E synthesis is indispensable during the larval-pupal metamorphosis of beetles, which could serve as a putative insecticide target for pest control. © 2022 Society of Chemical Industry.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics
14.
Sci Bull (Beijing) ; 67(2): 186-197, 2022 01 30.
Article in English | MEDLINE | ID: mdl-36546012

ABSTRACT

Juvenile hormone (JH) and 20-hydroxyecdysone (20E) coordinately regulate development and metamorphosis in insects. Two JH intracellular receptors, methoprene-tolerant (Met) and germ-cell expressed (Gce), have been identified in the fruit fly Drosophila melanogaster. To investigate JH membrane signaling pathway without the interference from JH intracellular signaling, we characterized phosphoproteome profiles of the Met gce double mutant in the absence or presence of JH in both chronic and acute phases. Functioning through a potential receptor tyrosine kinase and phospholipase C pathway, JH membrane signaling activated protein kinase C (PKC) which phosphorylated ultraspiracle (USP) at Ser35, the PKC phosphorylation site required for the maximal action of 20E through its nuclear receptor complex EcR-USP. The uspS35A mutant, in which Ser was replaced with Ala at position 35 by genome editing, showed decreased expression of Halloween genes that are responsible for ecdysone biosynthesis and thus attenuated 20E signaling that delayed developmental timing. The uspS35A mutant also showed lower Yorkie activity that reduced body size. Altogether, JH membrane signaling phosphorylates USP at Ser35 and thus potentiates 20E action that regulates the normal fly development. This study helps better understand the complex JH signaling network.


Subject(s)
Drosophila , Juvenile Hormones , Animals , Juvenile Hormones/genetics , Drosophila/metabolism , Ecdysterone/pharmacology , Drosophila melanogaster/metabolism , Signal Transduction , Methoprene/pharmacology , Protein Kinase C/genetics
15.
Biochem Pharmacol ; 206: 115329, 2022 12.
Article in English | MEDLINE | ID: mdl-36309080

ABSTRACT

Therapeutic targeting of the nuclear enzyme poly (ADP-ribose) polymerase 1 (PARP1) with PARP inhibitors (PARPis) in patients with a homologous recombination (HR)- deficient phenotype based on the mechanism of synthetic lethality has been shown tremendous success in cancer therapy. With the clinical use of various PARPis, emerging evidence has shown that some PARPis offer hope for breakthroughs in triple-negative breast cancer (TNBC) therapy, regardless of HR status. However, similar to other conventional cytotoxic drugs, PARPis are also subject to the intractable problem of drug resistance. Notably, acquired resistance to PARPis caused by point mutations in the PARP1 protein is hard to overcome with current strategies. To explore modalities to overcome resistance and identify patients who are most likely to benefit from PARP1-targeted therapy, we developed a proteolysis-targeted chimaera (PROTAC) to degrade mutant PARP1 in TNBC. Here, we investigated a PARP1 PROTAC termed "NN3″, which triggered ubiquitination and proteasome-mediated degradation of PARP1. Moreover, NN3 degraded PARP1 with resistance-related mutations. Interestingly, compared with other reported PARP1 degraders, NN3 exhibited a unique antitumor mechanism in p53-positive breast cancer cells that effectively promoted ferroptosis by downregulating the SLC7A11 pathway. Furthermore, NN3 showed potent activity and low toxicity in vivo. In conclusion, we propose PROTAC-mediated degradation of PARP1 as a novel strategy against mutation-related PARPi resistance and a paradigm for targeting breast cancer with functional p53 via ferroptosis induction.


Subject(s)
Antineoplastic Agents , Ferroptosis , Triple Negative Breast Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA1 Protein/genetics , Cell Line, Tumor , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proteolysis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Female
16.
PeerJ ; 10: e13719, 2022.
Article in English | MEDLINE | ID: mdl-35846878

ABSTRACT

Background: Cyclocytidine hydrochloride (HCl) has been reported to inhibit DNA synthesis by affecting DNA polymerase. Here, we tested the antiviral effect of cyclocytidine on hepatitis B virus (HBV) DNA synthesis, which is reliant on DNA polymerase activity. Materials and Methods: Cyclocytidine HCl was treated to HBV-producing HepAD38 cells or added to an endogenous polymerase reaction, and HBV DNA was detected by Southern blot. Results: Treatment of 20 µM cyclocytidine HCl significantly decreased the production of relaxed circular (rc) DNA in HepAD38 cells and block rcDNA synthesis in endogenous polymerase reaction (EPR), a cell free assay, possibly by inhibiting the HBV DNA polymerase activity. Conclusion: Cyclocytidine HCl could inhibit the synthesis of HBV rcDNA, the precursor of covalently closed circular DNA, and this result provides a case for the usage of "old" drugs for "new" applications.


Subject(s)
Ancitabine , DNA, Circular , Hepatitis B virus , Virus Replication , Ancitabine/pharmacology , DNA, Circular/antagonists & inhibitors , DNA, Circular/drug effects , DNA, Circular/genetics , DNA, Viral/genetics , DNA-Directed DNA Polymerase/genetics , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Virus Replication/drug effects , Virus Replication/genetics
17.
Bioorg Med Chem ; 70: 116912, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35830778

ABSTRACT

Poly ADP-ribose polymerase 1 (PARP1) plays an essential role in DNA repair signaling, rendering it an attractive target for cancer treatment. Despite the success of PARP1 inhibitors (PARPis), only a few patients can currently benefit from PARPis. Moreover, drug resistance to PARPis occurs during clinical treatment. Natural and acquired resistance to PARPis has forced us to seek new therapeutic approaches that target PARP1. Here, we synthesized a series of compounds by proteolysis-targeting chimera (PROTAC) technology to directly degrade the PARP1 protein. We found that CN0 (compound 3) with no polyethylene glycol (PEG) linker can degrade the PARP1 protein through the proteasome pathway. More importantly, CN0 could inhibit DNA damage repair, resulting in highly efficient accumulation of cytosolic DNA fragments due to unresolved unrepaired DNA lesions when combined with daunorubicin (DNR). Therefore, CN0 can activate the cyclic GMP-AMP synthase/stimulator of the interferon gene (cGAS/STING) pathway of innate immunity and then spread the resulting inflammatory signals, thereby reshaping the tumor microenvironment, which may eventually enhance T cell killing of tumor cells.


Subject(s)
Interferons , Nucleotidyltransferases , Humans , Daunorubicin/pharmacology , DNA/metabolism , Immunity, Innate , Interferons/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Proteolysis
18.
Cell Mol Life Sci ; 79(5): 261, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35478270

ABSTRACT

Lipids are either taken up from food sources or produced internally in specialized tissues such as the liver. Among others, both routes of lipid metabolism involve cytochrome P450 monooxygenases (CYPs). We sought to analyze the function of Cyp311a1 that has been shown to be expressed in the midgut of the fruit fly Drosophila melanogaster. Using a GFP-tagged version of CYP311A1 that is expressed under the control of its endogenous promoter, we show that Cyp311a1 localizes to the endoplasmic reticulum in epithelial cells of the anterior midgut. In larvae with reduced Cyp311a1 expression in the anterior midgut, compared to control larvae, the apical plasma membrane of the respective epithelial cells contains less and shorter microvilli. In addition, we observed reduction of neutral lipids in the fat body, the insect liver, and decreased phosphatidylethanolamine (PE) and triacylglycerols (TAG) amounts in the whole body of these larvae. Probably as a consequence, they cease to grow and eventually die. The microvillus defects in larvae with reduced Cyp311a1 expression are restored by supplying PE, a major phospholipid of plasma membranes, to the food. Moreover, the growth arrest phenotype of these larvae is partially rescued. Together, these results suggest that the anterior midgut is an import hub in lipid distribution and that the midgut-specific CYP311A1 contributes to this function by participating in shaping microvilli in a PE-dependent manner.


Subject(s)
Drosophila melanogaster , Lipids , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Larva , Microvilli
19.
Bioorg Med Chem ; 61: 116739, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35393219

ABSTRACT

The therapeutic strategy of poly (ADP-ribose) polymerase (PARP) inhibition of BRCA1/2 mutant cancers has been overwhelmingly successful, however, the highly aggressive triple negative breast cancers (TNBC) that receptor protein tyrosine kinase (RTKs) is known to be overexpressed are not sensitive to PARP inhibitors. Our research focused on exploring PARP inhibitors incorporating a bicyclic tetrahydropyridine pyrimidine. All synthesized compounds were more potent than Olaparib (ola) in killing tumor cells, especially in TNBC. Furthermore, compound 7 exhibited strong inhibitory effects on PARP enzymatic activity, moreover, the expression of EGFR and phosphorylated EGFR was inhibited by compound 7. Therefore, compound 7 can effectively inhibit TNBC cells with high expression of EGFR. In addition, significant synergistic effect of anti-tumor effect of new PARP inhibitors and adriamycin was also observed.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Triple Negative Breast Neoplasms , BRCA1 Protein/metabolism , Cell Line, Tumor , ErbB Receptors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Triple Negative Breast Neoplasms/pathology
20.
ACS Omega ; 7(3): 2571-2582, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35097256

ABSTRACT

Etoposide (VP-16) is used for the treatment of various cancers, including nasopharyngeal carcinoma (NPC); however, cancers develop resistance to this agent by promoting DNA repair. The DNA-PK (DNA-PKcs) catalytic subunit and poly(ADP-ribose) polymerase 1 (PARP1) mediate acquired resistance and poor survival in NPC cells exposed to DNA damaging agents. DNA repair can alter the sensitivity of NPC cells to DNA damaging agents, and these two enzymes function concomitantly in response to DNA damage in vivo. Therefore, we explored the relationship between DNA-PKcs and PARP1, which may affect NPC cell survival by regulating DNA repair after VP-16 treatment. We performed quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunoassays and found that DNA-PKcs knockdown downregulated the PARP1 and PAR expression. Conversely, PARP1 knockdown reduced DNA-PKcs activity, indicating the mutual regulation between DNA-PKcs and PARP1 in VP-16-induced DNA repair. Moreover, a combination treatment with olaparib (a PARP1 inhibitor) and NU7441 (a DNA-PKcs inhibitor) sensitized NPC cells to VP-16 in vitro and in vivo, suggesting that the combined treatment of olaparib, NU7441, and a DNA-damaging agent may be a successful treatment regimen in patients with NPC.

SELECTION OF CITATIONS
SEARCH DETAIL
...