Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37628197

ABSTRACT

Recently, end-to-end deep models for video compression have made steady advancements. However, this resulted in a lengthy and complex pipeline containing numerous redundant parameters. The video compression approaches based on implicit neural representation (INR) allow videos to be directly represented as a function approximated by a neural network, resulting in a more lightweight model, whereas the singularity of the feature extraction pipeline limits the network's ability to fit the mapping function for video frames. Hence, we propose a neural representation approach for video compression with an implicit multiscale fusion network (NRVC), utilizing normalized residual networks to improve the effectiveness of INR in fitting the target function. We propose the multiscale representations for video compression (MSRVC) network, which effectively extracts features from the input video sequence to enhance the degree of overfitting in the mapping function. Additionally, we propose the feature extraction channel attention (FECA) block to capture interaction information between different feature extraction channels, further improving the effectiveness of feature extraction. The results show that compared to the NeRV method with similar bits per pixel (BPP), NRVC has a 2.16% increase in the decoded peak signal-to-noise ratio (PSNR). Moreover, NRVC outperforms the conventional HEVC in terms of PSNR.

3.
Discov Oncol ; 13(1): 139, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36520265

ABSTRACT

Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.

4.
Cell Transplant ; 31: 9636897221116085, 2022.
Article in English | MEDLINE | ID: mdl-36062473

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a unique malignant tumor of the head and neck. Despite higher survival rates by the combination of radiotherapy and chemotherapy, the recurrence or metastasis of NPC still occurs at about 10%. Therefore, there is urgent demand to develop more effective in vivo models for preclinical trials to investigate the mechanisms of NPC development and progression and to explore better treatment approaches. In this study, we transplanted human NPC CNE1 cells into zebrafish embryos to establish a xenograft model of NPC, where the proliferation and invasion behaviors of NPC cells were investigated in vivo. Combining in vitro and in vivo analyses, we found that activating transcription factor 7 (ATF7) was involved in the occurrence and development of NPC regulated by peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1). The zebrafish NPC xenograft model established here thereby provides an in vivo tool for exploring the occurrence and development of NPC, which may help to identify new tumor markers and develop new therapeutic strategies for the treatment of NPC.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Animals , Carcinoma/drug therapy , Carcinoma/genetics , Carcinoma/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Heterografts , Humans , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/drug therapy , Zebrafish/metabolism
5.
World J Clin Cases ; 9(7): 1513-1523, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33728295

ABSTRACT

An outbreak of a novel coronavirus was reported in Wuhan, China, in late 2019. It has spread rapidly through China and many other countries, causing a global pandemic. Since February 2020, over 28 countries/regions have reported confirmed cases. Individuals with the infection known as coronavirus disease-19 (COVID-19) have similar clinical features as severe acute respiratory syndrome first encountered 17 years ago, with fever, cough, and upper airway congestion, along with high production of proinflammatory cytokines (PICs), which form a cytokine storm. PICs induced by COVID-19 include interleukin (IL)-6, IL-17, and monocyte chemoattractant protein-1. The production of cytokines is regulated by activated nuclear factor-kB and involves downstream pathways such as Janus kinase/signal transducers and activators transcription. Protein expression is also regulated by post-translational modification of chromosomal markers. Lysine residues in the peptide tails stretching out from the core of histones bind the sequence upstream of the coding portion of genomic DNA. Covalent modification, particularly methylation, activates or represses gene transcription. PICs have been reported to be induced by histone modification and stimulate exudation of hyaluronic acid, which is implicated in the occurrence of COVID-19. These findings indicate the impact of the expression of PICs on the pathogenesis and therapeutic targeting of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...