Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6551, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848424

ABSTRACT

Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.


Subject(s)
Moths , Plants , Animals , Plants/metabolism , Moths/metabolism , Insecta/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Endocytosis , Gene Expression Regulation, Plant
2.
New Phytol ; 237(1): 265-278, 2023 01.
Article in English | MEDLINE | ID: mdl-36131553

ABSTRACT

Caterpillar oral secretion (OS) contains active molecules that modulate plant defense signaling. We isolated an effector-like protein (Highly Accumulated Secretory Protein 1, HAS1) from cotton bollworm (Helicoverpa armigera) that is the most highly accumulated secretory protein of the nondigestive components in OS and belongs to venom R-like protein. Elimination of HAS1 by plant-mediated RNA interference reduced the suppression of OS on the defense response in plants. Plants expressing HAS1 are more susceptible to insect herbivory accompanied by the reduced expressions of multiple defense genes. HAS1 binds to the basic helix-loop-helix (bHLH) transcription factors, including GoPGF involved in pigmented gland formation and defense compounds biosynthesis in cotton and MYC3/MYC4 the main regulators in jasmonate (JA) signaling in Arabidopsis. The binding activity is required for HAS1 to inhibit the activation of bHLHs on plant defense gene expressions. Together with our previous study that another venom R-like protein HARP1 in cotton bollworm OS blocks JA signaling by interacting with JASMONATE-ZIM-domain repressors, we conclude that the venom R-like proteins in OS interfere with plant defense in a dual suppression manner. Considering the venom proteins in parasitic wasp assault the immune system of its host animal, our investigation reveals their conserved function in carnivorous and herbivorous insects.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Moths , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Trans-Activators/metabolism , Repressor Proteins/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plants/metabolism , Gossypium/genetics , Gossypium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...