Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 70(13): 4102-4111, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35333506

ABSTRACT

A simple and sensitive fluoroimmunoassay (FIA) based on a heavy-chain antibody (VHH) for rapid detection of fenitrothion was developed. A VHH library was constructed from an immunized alpaca, and one clone recognizing fenitrothion (namely, VHHjd8) was achieved after careful biopanning. It was biotinylated by fusing with the Avi tag and biotin ligase to obtain a fusion protein (VHHjd8-BT), showing both binding capacity to fenitrothion and the streptavidin poly-horseradish peroxidase conjugate (SA-polyHRP). Based on a competitive assay format, the absorbance spectrum of oxidized 3,3',5,5'-tetramethylbenzidine generated by SA-polyHRP overlapped the emission spectrum of carbon dots, which resulted in quenching of signals due to the inner-filter effect. The developed FIA showed an IC50 value of 1.4 ng/mL and a limit of detection of 0.03 ng/mL, which exhibited 15-fold improvement compared with conventional enzyme-linked immunosorbent assay. The recovery test of FIA was validated by standard GC-MS/MS, and the results showed good consistency, indicating that the assay is an ideal tool for rapid screening of fenitrothion in bulk food samples.


Subject(s)
Fenitrothion , Single-Domain Antibodies , Enzyme-Linked Immunosorbent Assay/methods , Fluoroimmunoassay/methods , Single-Domain Antibodies/chemistry , Streptavidin/chemistry , Tandem Mass Spectrometry
2.
Anal Chim Acta ; 1049: 188-195, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30612650

ABSTRACT

An electrochemical immunosensor for ultrasensitive detection of acrylamide (AA) in water and food samples was developed. SnO2-SiC hollow sphere nanochains with high surface area and gold nanoparticles with good electroconductivity were fabricated onto the surface of a glassy carbon electrode pre-coated with chitosan. The coating antigen (AA-4-mercaptophenylacetic acid-ovalbumin conjugate, AA-4-MPA-OVA) was immobilized on the electrode. Polyclonal antibody specific for AA-4-MPA was conjugated to gold nanorod (AuNR) as primary antibody (AuNR-Ab1). Horseradish peroxidase labelled anti-rabbit antibody produced in goat was conjugated to AuNR as secondary antibody (HRP-AuNR-Ab2). For detection, the analyte (AA-4-MPA) in sample competed with coating antigen for binding with AuNR-Ab1. After washing, HRP-AuNR-Ab2 was added to capture the AuNR-Ab1, and the electrical signal was obtained by addition of hydroquinone and H2O2. After investigation of the binding ability on nanomaterials and optimization of competitive immunoassay conditions, the proposed immunosensor exhibited a sensitive response to AA with a detection limit of 45.9 ±â€¯2.7 ng kg-1, and working range of 187 ±â€¯12.3 ng kg-1 to 104 ±â€¯8.2 µg kg-1 for drinking water samples. Recoveries of AA from spiked samples were ranged from 86.0% to 115.0%. The specificity, repeatability and stability of the immunosensor were also proved to be acceptable, indicating its potential application in AA monitoring.


Subject(s)
Acrylamide/analysis , Electrochemical Techniques/methods , Immunoassay/methods , Nanotubes/chemistry , Acrylamide/immunology , Antibodies/immunology , Biosensing Techniques/methods , Carbon Compounds, Inorganic/chemistry , Chitosan/chemistry , Coffee/chemistry , Drinking Water/analysis , Food Contamination/analysis , Gold/chemistry , Limit of Detection , Ovalbumin/immunology , Phenylacetates/immunology , Silicon Compounds/chemistry , Solanum tuberosum/chemistry , Sulfhydryl Compounds/immunology , Tin Compounds/chemistry
3.
Talanta ; 170: 502-508, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28501203

ABSTRACT

Progesterone (P4) is a kind of hormone that can cause neuropathic disturbances in humans when the concentration overpasses a certain degree. In this work, an electrochemical immunosensor capable of detecting P4 sensitively and selectively was developed. Thionine-graphene oxide (Thi-GO) composites with excellent biocompatibility were synthesized and coated to a clear glassy carbon electrode. P4 coating antigen (P4-OVA) was immobilized to the electrode, then sample as well as biotinylated antibody (biotin-P4 Ab) were added. The free P4 can compete with P4-OVA for binding to biotin-P4 Ab. After the further addition of streptavidin-HRP, H2O2 was introduced to develop electrical signal for quantitative determination of P4. After careful optimization of assay conditions, the proposed immunosensor showed a linear range from 0.02 to 20ngmL-1 for P4 in milk samples. The averaged recoveries from spiked samples ranged from 84.0% to 102.0%, which correlated well with standard HPLC-MS/MS. The biosensor also showed good specificity, reproducibility and stability, indicating its potential application in monitoring of P4 in a simple and low cost manner.


Subject(s)
Biosensing Techniques/methods , Biotin/chemistry , Graphite/chemistry , Milk/chemistry , Phenothiazines/chemistry , Progesterone/analysis , Streptavidin/chemistry , Animals , Food Analysis/methods , Immunoassay/methods , Immunoconjugates/chemistry , Limit of Detection , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...