Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2400486, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978328

ABSTRACT

The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.

2.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166586, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36374802

ABSTRACT

Lenvatinib, a multitarget tyrosine kinase inhibitor (TKI), increases the incidence of severe hypertension and thus the incidence of cardiovascular complications. Inhibition of ferroptosis, a newly recognized type of cell death, alleviates endothelial dysfunction. Here, we report that lenvatinib-induced hypertension is associated with ferroptosis of endothelial cells. RNA sequencing (RNA-seq) showed that lenvatinib led to ferroptosis of endothelial cells and that administration of mouse with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, dramatically ameliorated lenvatinib-induced hypertension and reversed lenvatinib-induced impairment of endothelium-dependent relaxation (EDR). Furthermore, lenvatinib significantly reduced glutathione peroxidase 4 (GPX4) expressions in the mouse aorta and human umbilical vein endothelial cells (HUVECs) and increased lipid peroxidation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) levels in HUVECs. Immunofluorescence and Western blotting showed that lenvatinib significantly reduced Yes-associated protein (YAP) nuclear translocation but not cytoplasmic YAP expression in HUVECs. The data, generated from both in vivo and in vitro, showed that lenvatinib reduced total YAP (t-YAP) expression and increased the phosphorylation of YAP at both Ser127 and Ser397, without affecting YAP mRNA levels in HUVECs. XMU-MP-1 mediated YAP activation or YAP overexpression effectively attenuated the lenvatinib-induced decrease in GPX4 expression and increases in LDH release and MDA levels. In addition, overexpression of YAP in HUVECs ameliorated lenvatinib-induced decrease in the mRNA and protein levels of spermidine/spermine N (1)-acetyltransferase-1 (SAT1), heme oxygenase-1 (HO-1), and ferritin heavy chain 1 (FTH1). Taken together, our data suggest that lenvatinib-induced inhibition of YAP led to ferroptosis of endothelial cells and subsequently resulted in vascular dysfunction and hypertension.


Subject(s)
Ferroptosis , Hypertension , Humans , Mice , Animals , Blood Pressure , Human Umbilical Vein Endothelial Cells , RNA, Messenger
3.
Front Pharmacol ; 13: 970812, 2022.
Article in English | MEDLINE | ID: mdl-36278222

ABSTRACT

Background: Previous studies have demonstrated that activated endothelial epithelial sodium channel (EnNaC) impairs vasodilatation, which contributes to salt-sensitive hypertension. Here, we investigate whether mesenteric artery (MA) EnNaC is involved in cold exposure-induced hypertension (CIH) and identify the underlying mechanisms in SD rats. Methods: One group of rats was housed at room temperature and served as control. Three groups of rats were kept in a 4°C cold incubator for 10 h/day; among which two groups were administrated with either benzamil (EnNaC blocker) or eplerenone (mineralocorticoid receptor antagonist, MR). Blood pressure (BP), vasodilatation, and endothelial function were measured with tail-cuff plethysmography, isometric myograph, and Total Nitric Oxide (NO) Assay kit, respectively. A cell-attached patch-clamp technique, in split-open MA, was used to determine the role of EnNaC in CIH rats. Furthermore, the plasma aldosterone levels were detected using an ELISA kit; and Western blot analysis was used to examine the relative expression levels of Sgk1 and Nedd4-2 proteins in the MA of SD rats. Results: We demonstrated that cold exposure increased BP, impaired vasodilatation, and caused endothelial dysfunction in rats. The activity of EnNaC significantly increased, concomitant with an increased level of plasma aldosterone and activation of Sgk1/Nedd4-2 signaling. Importantly, CIH was inhibited by either eplerenone or benzamil. It appeared that cold-induced decrease in NO production and impairment of endothelium-dependent relaxation (EDR) were significantly ameliorated by either eplerenone or benzamil in MA of CIH rats. Moreover, treatment of MAs with aldosterone resulted in an activation of EnNaC, a reduction of NO, and an impairment of EDR, which were significantly inhibited by either eplerenone or GSK650394 (Sgk1 inhibitor) or benzamil. Conclusion: Activation of EnNaC contributes to CIH; we suggest that pharmacological inhibition of the MR/Sgk1/Nedd4-2/EnNaC axis may be a potential therapeutic strategy for CIH.

4.
Front Cell Dev Biol ; 9: 672335, 2021.
Article in English | MEDLINE | ID: mdl-34222246

ABSTRACT

BACKGROUND: Hyperhomocysteinemia (HHcy) causes cardiovascular diseases via regulating inflammatory responses. We investigated whether and how the epithelial sodium channel (ENaC), a recently identified ion channel in endothelial cells, plays a role in HHcy-induced endothelial dysfunction. METHODS: Cell-attached patch-clamp recording in acute split-open aortic endothelial cells, western blot, confocal imaging, and wire myograph combined with pharmacological approaches were used to determine whether HHcy-mediated inflammatory signaling leads to endothelial dysfunction via stimulating ENaC. RESULTS: The data showed that 4 weeks after L-methionine diet the levels of plasma Hcy were significantly increased and the ENaC was dramatically activated in mouse aortic endothelial cells. Administration of benzamil, a specific ENaC blocker, ameliorated L-methionine diet-induced impairment of endothelium-dependent relaxation (EDR) and reversed Hcy-induced increase in ENaC activity. Pharmacological inhibition of NADPH oxidase, reactive oxygen species (ROS), cyclooxygenase-2 (COX-2)/thromboxane B2 (TXB2), or serum/glucocorticoid regulated kinase 1 (SGK1) effectively attenuated both the Hcy-induced activation of endothelial ENaC and impairment of EDR. Our in vitro data showed that both NADPH oxidase inhibitor and an ROS scavenger reversed Hcy-induced increase in COX-2 expression in human umbilical vein endothelial cells (HUVECs). Moreover, Hcy-induced increase in expression levels of SGK-1, phosphorylated-SGK-1, and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in HUVECs were significantly blunted by a COX-2 inhibitor. CONCLUSION: We show that Hcy activates endothelial ENaC and subsequently impairs EDR of mouse aorta, via ROS/COX-2-dependent activation of SGK-1/Nedd4-2 signaling. Our study provides a rational that blockade of the endothelial ENaC could be potential method to prevent and/or to treat Hcy-induced cardiovascular disease.

5.
Front Pharmacol ; 12: 665111, 2021.
Article in English | MEDLINE | ID: mdl-34122084

ABSTRACT

The use of cyclosporine A (CsA) in transplant recipients is limited due to its side effects of causing severe hypertension. We have previously shown that CsA increases the activity of the epithelial sodium channel (ENaC) in cultured distal nephron cells. However, it remains unknown whether ENaC mediates CsA-induced hypertension and how we could prevent hypertension. Our data show that the open probability of ENaC in principal cells of split-open cortical collecting ducts was significantly increased after treatment of rats with CsA; the increase was attenuated by lovastatin. Moreover, CsA also elevated the levels of intracellular cholesterol (Cho), intracellular reactive oxygen species (ROS) via activation of NADPH oxidase p47phox, serum- and glucocorticoid-induced kinase isoform 1 (Sgk1), and phosphorylated neural precursor cell-expressed developmentally downregulated protein 4-2 (p-Nedd4-2) in the kidney cortex. Lovastatin also abolished CsA-induced elevation of α-, ß-, and γ-ENaC expressions. CsA elevated systolic blood pressure in rats; the elevation was completely reversed by lovastatin (an inhibitor of cholesterol synthesis), NaHS (a donor of H2S which ameliorated CsA-induced elevation of reactive oxygen species), or amiloride (a potent ENaC blocker). These results suggest that CsA elevates blood pressure by increasing ENaC activity via a signaling cascade associated with elevation of intracellular ROS, activation of Sgk1, and inactivation of Nedd4-2 in an intracellular cholesterol-dependent manner. Our data also show that NaHS ameliorates CsA-induced hypertension by inhibition of oxidative stress.

6.
Front Pharmacol ; 12: 627875, 2021.
Article in English | MEDLINE | ID: mdl-34054517

ABSTRACT

We have shown that cholesterol regulates the activity of ion channels in mouse cortical collecting duct (CCD) mpkCCDc14 cells and that the transient receptor potential melastatin 4 (TRPM4) channel is expressed in these cells. However, whether TRPM4 channel is regulated by cholesterol remains unclear. Here, we performed inside-out patch-clamp experiments and found that inhibition of cholesterol biosynthesis by lovastatin significantly decreased, whereas enrichment of cholesterol with exogenous cholesterol significantly increased, TRPM4 channel open probability (Po) by regulating its sensitivity to Ca2+ in mpkCCDc14 cells. In addition, inside-out patch-clamp data show that acute depletion of cholesterol in the membrane inner leaflet by methyl-ß-cyclodextrin (MßCD) significantly reduced TRPM4 Po, which was reversed by exogenous cholesterol. Moreover, immunofluorescence microscopy, Western blot, cell-surface biotinylation, and patch clamp analysis show that neither inhibition of intracellular cholesterol biosynthesis with lovastatin nor application of exogenous cholesterol had effect on TRPM4 channel protein abundance in the plasma membrane of mpkCCDc14 cells. Sucrose density gradient centrifugation studies demonstrate that TRPM4 was mainly located in cholesterol-rich lipid rafts. Lipid-protein overlay experiments show that TRPM4 directly interacted with several anionic phospholipids, including PI(4,5)P2. Depletion of PI(4,5)P2 with either wortmannin or PGE2 abrogated the stimulatory effects of exogenous cholesterol on TRPM4 activity, whereas exogenous PI(4,5)P2 (diC8-PI(4,5)P2, a water-soluble analog) increased the effects. These results suggest that cholesterol stimulates TRPM4 via a PI(4,5)P2-dependent mechanism.

7.
Front Pharmacol ; 12: 617165, 2021.
Article in English | MEDLINE | ID: mdl-33841146

ABSTRACT

Antiangiogenic tyrosine kinases inhibitors induce hypertension, which may increase the incidents of cardiovascular complications and limit their use. However, the mechanisms by which usage of TKIs results in hypertension have not been fully understood. Here, we report the potential mechanisms of how sunitinib, a widely used TKI, induces hypertension. Male SD rats were randomly divided into control group and sunitinib-administrated group. We show that sunitinib administration for seven days caused a significant increase in artery blood pressure, along with glycerolipid metabolism abnormalities including decreased food intake and low body weight, hypoglycemia, hyperinsulinemia. Sunitinib administration also resulted in a significant increase in the levels of insulin autoantibody (IAA), cyclic adenosine monophosphate and free fatty acid in serum; whereas, sunitinib administration had no effects on serum glucagon levels. Sunitinib led to the decreased insulin sensitivity as determined by insulin tolerance test (ITT) and glucose tolerance test (GTT), reflecting insulin resistance occurred in sunitinib-treated rats. The results obtained from wire myograph assay in the mesenteric arteries show that endothelium-dependent relaxation, but not endothelium-independent relaxation, was impaired by sunitinib. Furthermore, western blot analysis revealed that the expressions levels of phosphorylated IRS-1, Pellino-1, AKT and eNOS were significantly attenuated by sunitinib in rat mesenteric artery tissues and in the sunitinib-treated primary cultured mesenteric artery endothelial cells. The levels of serum and endothelium-derived nitric oxide were also significantly decreased by sunitinib. Moreover, sunitinib-induced decrease in the expression levels of phosphorylated AKT and eNOS was further reduced by knocking down of Pellino-1 in MAECs. Our results suggest that sunitinib causes vascular dysfunction and hypertension, which are associated with insulin resistance- and Pellino-1-mediated inhibition of AKT/eNOS/NO signaling. Our results may provide a rational for preventing and/or treating sunitinib-induced endothelial dysfunction and hypertension.

8.
Cancer Lett ; 502: 97-107, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33429007

ABSTRACT

Nearly 70% of ovarian cancer (OC) patients experience recurrence within the first 2 years after initial treatment. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play a pivotal role in the pathogenesis of OC progression, resistance to therapy and recurrent OC (ROC). Transcriptome profiling studies have reported differential expression patterns of lncRNAs in OC which are related to increased cell invasion, metastasis and drug resistance. In this review, we highlighted the roles of lncRNAs in OC progression and outlined the potential molecular mechanisms by which lncRNAs impact on ROC. Recent advances using lncRNAs as potential biomarkers for screening, detection, prediction, response to therapy and as therapeutic targets are discussed.


Subject(s)
Neoplasm Recurrence, Local/genetics , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Disease Progression , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasm Recurrence, Local/drug therapy , Ovarian Neoplasms/drug therapy , Precision Medicine , RNA, Long Noncoding/drug effects
9.
Acta Pharmacol Sin ; 42(9): 1437-1448, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33303990

ABSTRACT

Aflibercept, as a soluble decoy vascular endothelial growth factor receptor, Which has been used as a first-line monotherapy for cancers. Aflibercept often causes cardiovascular toxicities including hypertension, but the mechanisms underlying aflibercept-induced hypertension remain unknown. In this study we investigated the effect of short-term and long-term administration of aflibercept on blood pressure (BP), vascular function, NO bioavailability, oxidative stress and endothelin 1 (ET-1) in mice and cultured endothelial cells. We showed that injection of a single-dose of aflibercept (18.2, 36.4 mg/kg, iv) rapidly and dose-dependently elevated BP in mice. Aflibercept treatment markedly impaired endothelial-dependent relaxation (EDR) and resulted in NADPH oxidases 1 (NOX1)- and NADPH oxidases 4 (NOX4)-mediated generation of ROS, decreased the activation of protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) concurrently with a reduction in nitric oxide (NO) production and elevation of ET-1 levels in mouse aortas; these effects were greatly attenuated by supplementation of L-arginine (L-arg, 0.5 or 1.0 g/kg, bid, ig) before aflibercept injection. Similar results were observed in L-arg-pretreated cultured endothelial cells, showing markedly decreased ROS accumulation and AKT/eNOS/NO signaling impairment induced by aflibercept. In order to assess the effects of long-term aflibercept on hypertension and to evaluate the beneficial effects of L-arg supplementation, we administered these two drugs to WT mice for up to 14 days (at an interval of two days). Long-term administration of aflibercept resulted in a sustained increase in BP and a severely impaired EDR, which are associated with NOX1/NOX4-mediated production of ROS, increase in ET-1, inhibition of AKT/eNOS/NO signaling and a decreased expression of cationic amino acid transporter (CAT-1). The effects caused by long-term administration were greatly attenuated by L-arg supplementation in a dose-dependent manner. We conclude that aflibercept leads to vascular dysfunction and hypertension by inhibiting CAT-1/AKT/eNOS/NO signaling, increasing ET-1, and activating NOX1/NOX4-mediated oxidative stress, which can be suppressed by supplementation of L-arg. Therefore, L-arg could be a potential therapeutic agent for aflibercept-induced hypertension.


Subject(s)
Arginine/pharmacology , Hypertension/chemically induced , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Recombinant Fusion Proteins/adverse effects , Vascular Diseases/chemically induced , Animals , Aorta/metabolism , Aorta/pathology , Human Umbilical Vein Endothelial Cells , Humans , Hypertension/metabolism , Hypertension/physiopathology , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins/pharmacology , Signal Transduction/drug effects , Vascular Diseases/metabolism , Vascular Diseases/physiopathology
10.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165989, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33065235

ABSTRACT

We previously showed that increased epithelial sodium channel (ENaC) activity in endothelial cells induced by oxidized low-density lipoprotein (ox-LDL) contributes to vasculature dysfunction. Here, we investigated whether ENaC participates in the pathological process of atherosclerosis using LDL receptor-deficient (LDLr-/-) mice. Male C57BL/6 and LDLr-/- mice were fed a normal diet (ND) or high fat diet (HFD) for 10 weeks. Our data show that treatment of LDLr-/- mice with a specific ENaC blocker, benzamil, significantly decreased atherosclerotic lesion formation and expression of matrix metalloproteinase 2 (MMP2) and metalloproteinase 9 (MMP9) in aortic arteries. Furthermore, benzamil ameliorated HFD-induced impairment of aortic endothelium-dependent dilation by reducing expression of proinflammatory cytokines, including TNF-α, IL-1ß, and IL-6 and production of adhesion molecules including VCAM-1 and ICAM-1 in both C57BL/6 and LDLr-/- mice fed with HFD. In addition, HFD significantly increased ENaC activity and the levels of serum lipids, including ox-LDL. Our in vitro data further demonstrated that exogenous ox-LDL significantly increased the production of TNF-α, IL-1ß, IL-6, VCAM-1 and ICAM-1. This ox-LDL-induced increase in inflammatory cytokines and adhesion molecules was reversed by γ-ENaC silencing or by treatment with the cyclooxygenase-2 (COX-2) antagonist celecoxib. Benzamil inhibited HFD-induced increase in COX-2 expression in aortic tissue in both C57BL/6 and LDLr-/- mice, and γ-ENaC gene silencing attenuated ox-LDL-induced COX-2 expression in HUVECs. These data together suggest that HFD-induced activation of ENaC stimulates inflammatory signaling, thereby contributes to HFD-induced endothelial dysfunction and atherosclerotic lesion formation. Thus, targeting endothelial ENaC may be a promising strategy to halt atherogenesis.


Subject(s)
Atherosclerosis , Diet, High-Fat/adverse effects , Epithelial Sodium Channels/metabolism , Receptors, LDL/deficiency , Animals , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cytokines/genetics , Cytokines/metabolism , Epithelial Sodium Channels/genetics , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Lipoproteins, LDL/genetics , Lipoproteins, LDL/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Receptors, LDL/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
11.
Oxid Med Cell Longev ; 2020: 3921897, 2020.
Article in English | MEDLINE | ID: mdl-33194000

ABSTRACT

Previous studies have shown that high salt induces artery stiffness by causing endothelial dysfunction via increased sodium influx. We used our unique split-open artery technique combined with protein biochemistry and in vitro measurement of vascular tone to test a hypothesis that bone morphogenetic protein 4 (BMP4) mediates high salt-induced loss of vascular relaxation by stimulating the epithelial sodium channel (ENaC) in endothelial cells. The data show that high salt intake increased BMP4 both in endothelial cells and in the serum and that exogenous BMP4 stimulated ENaC in endothelial cells. The data also show that the stimulation is mediated by p38 mitogen-activated protein kinases (p38 MAPK) and serum and glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor cell expressed developmentally downregulated gene 4-2 (Nedd4-2) (Sgk1/Nedd4-2). Furthermore, BMP4 decreased mesenteric artery relaxation in a benzamil-sensitive manner. These results suggest that high salt intake stimulates endothelial cells to express and release BMP4 and that the released BMP4 reduces artery relaxation by stimulating ENaC in endothelial cells. Therefore, stimulation of ENaC in endothelial cells by BMP4 may serve as another pathway to participate in the complex mechanism of salt-sensitive (SS) hypertension.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Endothelial Cells/metabolism , Epithelial Sodium Channels/metabolism , Hypertension/metabolism , MAP Kinase Signaling System , Animals , Endothelial Cells/pathology , Hypertension/pathology , Immediate-Early Proteins/metabolism , Male , Nedd4 Ubiquitin Protein Ligases/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Br J Pharmacol ; 176(18): 3695-3711, 2019 09.
Article in English | MEDLINE | ID: mdl-31222723

ABSTRACT

BACKGROUND AND PURPOSE: We have shown that cholesterol is synthesized in the principal cells of renal cortical collecting ducts (CCD) and stimulates the epithelial sodium channels (ENaC). Here we have determined whether lovastatin, a cholesterol synthesis inhibitor, can antagonize the hypertension induced by activated ENaC, following deletion of the cholesterol transporter (ATP-binding cassette transporter A1; ABCA1). EXPERIMENTAL APPROACH: We selectively deleted ABCA1 in the principal cells of mouse CCD and used the cell-attached patch-clamp technique to record ENaC activity. Western blot and immunofluorescence staining were used to evaluate protein expression levels. Systolic BP was measured with the tail-cuff method. KEY RESULTS: Specific deletion of ABCA1 elevated BP and ENaC single-channel activity in the principal cells of CCD in mice. These effects were antagonized by lovastatin. ABCA1 deletion elevated intracellular cholesterol levels, which was accompanied by elevated ROS, increased expression of serum/glucocorticoid regulated kinase 1 (Sgk1), phosphorylated neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) and furin, along with shorten the primary cilium, and reduced ATP levels in urine. CONCLUSIONS AND IMPLICATIONS: These data suggest that specific deletion of ABCA1 in principal cells increases BP by stimulating ENaC channels via a cholesterol-dependent pathway which induces several secondary responses associated with oxidative stress, activated Sgk1/Nedd4-2, increased furin expression, and reduced cilium-mediated release of ATP. As ABCA1 can be blocked by cyclosporine A, these results suggest further investigation of the possible use of statins to treat CsA-induced hypertension.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Antihypertensive Agents/therapeutic use , Epithelial Sodium Channel Blockers/therapeutic use , Hypertension/drug therapy , Lovastatin/therapeutic use , Animals , Anticholesteremic Agents/pharmacology , Antihypertensive Agents/pharmacology , Epithelial Sodium Channel Blockers/pharmacology , Epithelial Sodium Channels/physiology , Hypertension/metabolism , Hypertension/physiopathology , Kidney Tubules/metabolism , Lovastatin/pharmacology , Male , Mice, Knockout
13.
Biochim Biophys Acta Mol Basis Dis ; 1865(7): 1915-1924, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31109455

ABSTRACT

We have previously shown that blockade of ATP-binding cassette transporter A1 (ABCA1) with cyclosporine A (CsA) stimulates the epithelial sodium channel (ENaC) in cultured distal nephron cells. Here we show that CsA elevated systolic blood pressure in both wild-type and apolipoprotein E (ApoE) knockout (KO) mice to a similar level. The elevated systolic blood pressure was completely reversed by inhibition of cholesterol (Cho) synthesis with lovastatin. Inside-out patch-clamp data show that intracellular Cho stimulated ENaC in cultured distal nephron cells by interacting with phosphatidylinositol­4,5­bisphosphate (PIP2), an ENaC activator. Confocal microscopy data show that both α­ENaC and PIP2 were localized in microvilli via a Cho-dependent mechanism. Deletion of membrane Cho reduced the levels of γ­ENaC in the apical membrane. Reduced ABCA1 expression and elevated intracellular Cho were observed in old mice, compared to young mice. In parallel, cell-attached patch-clamp data from the split-open cortical collecting ducts (CCD) show that ENaC activity was significantly increased in old mice. These data suggest that elevation of intracellular Cho due to blockade of ABCA1 stimulates ENaC, which may contribute to CsA-induced hypertension. This study also implies that reduced ABCA1 expression may mediate age-related hypertension by increasing ENaC activity via elevation of intracellular Cho.


Subject(s)
Cholesterol/metabolism , Cyclosporine/adverse effects , Enzyme Inhibitors/adverse effects , Epithelial Sodium Channels/metabolism , Hypertension/chemically induced , ATP Binding Cassette Transporter 1/antagonists & inhibitors , ATP Binding Cassette Transporter 1/metabolism , Animals , Blood Pressure/drug effects , Cell Line , Hypertension/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol Phosphates/metabolism , Xenopus
14.
Cell Physiol Biochem ; 47(3): 1051-1059, 2018.
Article in English | MEDLINE | ID: mdl-29843130

ABSTRACT

BACKGROUND/AIMS: The epithelial sodium channel (ENaC) in cortical collecting duct (CCD) principal cells plays a critical role in regulating systemic blood pressure. We have previously shown that cholesterol (Cho) in the apical cell membrane regulates ENaC; however, the underlying mechanism remains unclear. METHODS: Patch-clamp technique and confocal microscopy were used to evaluate ENaC activity and density. RESULTS: Here we show that extraction of membrane Cho with methyl-ß-cyclodextrin (MßCD) significantly reduced amiloride-sensitive current and ENaC single-channel activity. The effects were reproduced by inhibition of Cho synthesis in the cells with lovastatin. We have previously shown that phosphatidylinositol-4,5-bisphosphate (PIP2), an ENaC activator, is predominantly located in the microvilli, a specialized apical membrane domain. Here, our confocal microscopy data show that α-ENaC was co-localized with PIP2 in the microvilli and that Cho was also co-localized with PIP2 in the microvilli. Either extraction of Cho with MßCD or inhibition of Cho synthesis with lovastatin consistently reduced the levels of Cho, PIP2, and ENaC in the microvilli. CONCLUSIONS: Since PIP2 can directly stimulate ENaC and also affect ENaC trafficking, these data suggest that depletion of Cho reduces ENaC apical density and activity at least in part by decreasing PIP2 in the microvilli.


Subject(s)
Cholesterol/metabolism , Epithelial Sodium Channels/metabolism , Kidney Tubules, Collecting/metabolism , Microvilli/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Xenopus Proteins , Xenopus laevis , beta-Cyclodextrins/pharmacology
15.
Hepatology ; 68(5): 1769-1785, 2018 11.
Article in English | MEDLINE | ID: mdl-29704259

ABSTRACT

There is no effective treatment method for nonalcoholic fatty liver disease (NAFLD), the most common liver disease. The exact mechanism underlying the pathogenesis of NAFLD remains to be elucidated. Here, we report that tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein (TRUSS) acts as a positive regulator of NAFLD and in a variety of metabolic disorders. TRUSS expression was increased in the human liver specimens with NAFLD or nonalcoholic steatohepatitis, and in the livers of high-fat diet (HFD)-induced and genetically obese mice. Conditional knockout of TRUSS in hepatocytes significantly ameliorated hepatic steatosis, insulin resistance, glucose intolerance, and inflammatory responses in mice after HFD challenge or in spontaneous obese mice with normal chow feeding. All of these HFD-induced pathological phenotypes were exacerbated in mice overexpressing TRUSS in hepatocytes. We show that TRUSS physically interacts with the inhibitor of nuclear factor κB α (IκBα) and promotes the ubiquitination and degradation of IκBα, which leads to aberrant activation of nuclear factor κB (NF-κB). Overexpressing IκBαS32A/S36A , a phosphorylation-resistant mutant of IκBα, in the hepatocyte-specific TRUSS overexpressing mice almost abolished HFD-induced NAFLD and metabolic disorders. Conclusion: Hepatocyte TRUSS promotes pathological stimuli-induced NAFLD and metabolic disorders, through activation of NF-κB by promoting ubiquitination and degradation of IκBα. Our findings may provide a strategy for the prevention and treatment of NAFLD by targeting TRUSS.


Subject(s)
Hepatocytes/metabolism , NF-KappaB Inhibitor alpha/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , TRPC Cation Channels/metabolism , Trans-Activators/metabolism , Animals , Blotting, Western , Cytokines/blood , Hepatocytes/pathology , Humans , Immunohistochemistry , Immunoprecipitation , Insulin Resistance/genetics , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Signal Transduction , Ubiquitination
16.
Br J Pharmacol ; 175(8): 1318-1328, 2018 04.
Article in English | MEDLINE | ID: mdl-28480509

ABSTRACT

BACKGROUND AND PURPOSE: The epithelial sodium channel (ENaC) is expressed in endothelial cells and acts as a negative modulator of vasodilatation. Oxidized LDL (ox-LDL) is a key pathological factor in endothelial dysfunction. In the present study we examined the role of ENaC in ox-LDL-induced endothelial dysfunction and its associated signal transduction pathway. EXPERIMENTAL APPROACH: Patch clamp techniques combined with pharmacological approaches were used to examine ENaC activity in the endothelial cells of a split-open mouse thoracic aorta. Western blot analysis was used to determine ENaC expression in the aorta. The aorta relaxation was measured using a wire myograph assay. KEY RESULTS: Ox-LDL, but not LDL, significantly increased ENaC activity in the endothelial cells attached to split-open thoracic aortas, and the increase was inhibited by a lectin-like ox-LDL receptor-1 (LOX-1) antagonist (κ-carrageenan), an NADPH oxidase inhibitor (apocynin), and a scavenger of ROS (TEMPOL). Sodium nitroprusside, an NO donor, diminished the ox-LDL-mediated activation of ENaC, and this effect was abolished by inhibiting soluble guanylate cyclase (sGC) and PKG. Ox-LDL reduced the endothelium-dependent vasodilatation of the aorta pectoralis induced by ACh, and this reduction was partially restored by blocking ENaC. CONCLUSION AND IMPLICATIONS: Ox-LDL stimulates ENaC in endothelial cells through LOX-1 receptor-mediated activation of NADPH oxidase and accumulation of intracellular ROS. Since the stimulation of ENaC can be reversed by elevating NO, we suggest that both inhibition of ENaC and an elevation of NO may protect the endothelium from ox-LDL-induced dysfunction. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Subject(s)
Endothelial Cells/physiology , Epithelial Sodium Channels/physiology , Lipoproteins, LDL/physiology , Animals , Aorta, Thoracic/cytology , Aorta, Thoracic/physiology , In Vitro Techniques , Male , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Scavenger Receptors, Class E/physiology
17.
Br J Pharmacol ; 175(8): 1305-1317, 2018 04.
Article in English | MEDLINE | ID: mdl-28409833

ABSTRACT

BACKGROUND AND PURPOSE: Our recent studies show that the reduced activity of epithelial sodium channels (ENaC) in endothelial cells accounts for the adaptation of vasculature to salt in Sprague-Dawley rats. The present study examines a hypothesis that enhanced ENaC activity mediates the loss of vasorelaxation in Dahl salt-sensitive (SS) rats. EXPERIMENTAL APPROACH: We used the cell-attached patch-clamp technique to record ENaC activity in split-open mesenteric arteries. Western blot and immunofluorescence staining were used to evaluate the levels of aldosterone, ENaC, eNOS and NO. Blood pressure was measured with the tail-cuff method and the artery relaxation was measured with the wire myograph assay. KEY RESULTS: High-salt (HS) diet significantly increased plasma aldosterone and ENaC activity in the endothelial cells of Dahl SS rats. The endothelium-dependent artery relaxation was blunted by HS challenge in these rats. Amiloride, a potent blocker of ENaC, increased both phosphorylated eNOS and NO and therefore prevented the HS-induced loss of vasorelaxation. As, in SS rats, endogenous aldosterone was already elevated by HS challenge, exogenous aldosterone did not further elevate ENaC activity in the rats fed with HS. Eplerenone, a mineralocorticoid receptor antagonist, attenuated the effects of HS on both ENaC activity and artery relaxation. CONCLUSIONS AND IMPLICATIONS: These data suggest that HS diet blunts artery relaxation and causes hypertension via a pathway associated with aldosterone-dependent activation of ENaC in endothelial cells. This pathway provides one of the mechanisms by which HS causes hypertension in Dahl SS rats. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Subject(s)
Endothelial Cells/drug effects , Epithelial Sodium Channel Agonists/pharmacology , Epithelial Sodium Channels/physiology , Sodium Chloride, Dietary/pharmacology , Animals , Blood Pressure/drug effects , Cells, Cultured , Endothelial Cells/physiology , Male , Mesenteric Arteries/cytology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Rats, Inbred Dahl , Vasodilation/drug effects
18.
Oxid Med Cell Longev ; 2018: 7560610, 2018.
Article in English | MEDLINE | ID: mdl-30622672

ABSTRACT

Previous studies indicate that the epithelial sodium channel (ENaC) in the kidney is upregulated in diabetes mellitus. Here, we show that ENaC single-channel activity in distal nephron cells was significantly increased by palmitate, a free fatty acid which is elevated in diabetes mellitus. We also show that palmitate increased intracellular Ca2+ and that after chelating intracellular Ca2+ with BAPTA-AM, palmitate failed to affect ENaC activity. Treatment of the cells with 2-aminoethoxydiphenyl borate (2-APB, an inhibitor of IP3 receptors) abolished the elevation of both intracellular Ca2+ and ENaC activity. Treatment of the cells with apocynin (an NADPH oxidase inhibitor), dithiothreitol/NaHS (reducing agents), or LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) prevented palmitate-induced ENaC activity, whereas thimerosal (an oxidizing agent) mimicked the effects of palmitate on ENaC activity. However, these treatments did not alter the levels of intracellular Ca2+, indicating that elevation of reactive oxygen species (ROS) and activation of PI3K are downstream of the signaling cascade. Since we have shown that ROS stimulate ENaC by activating PI3K, these data together suggest that palmitate first elevates intracellular Ca2+, then activates an NADPH oxidase to elevate intracellular ROS and PI3K activity, and finally increases ENaC activity via the activated PI3K.


Subject(s)
Calcium/metabolism , Epithelial Sodium Channels/metabolism , Palmitates/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Animals , Xenopus laevis
19.
Oncotarget ; 8(24): 39323-39344, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28445151

ABSTRACT

The efficacious treatment of hepatocellular carcinoma (HCC) remains a challenge, partially being attributed to intrinsic chemoresistance. Previous reports have observed increased TFF3 expression in HCC. Herein, we investigated the functional role of TFF3 in progression of HCC, and in both intrinsic and acquired chemoresistance. TFF3 expression was observed to be upregulated in HCC and associated with poor clinicopathological features and worse patient survival outcome. Functionally, forced expression of TFF3 in HCC cell lines increased cell proliferation, cell survival, anchorage-independent and 3D matrigel growth, cell invasion and migration, and in vivo tumor growth. In contrast, depleted expression of TFF3 decreased the oncogenicity of HCC cells as indicated by the above parameters. Furthermore, forced expression of TFF3 decreased doxorubicin sensitivity of HCC cells, which was attributed to increased doxorubicin efflux and cancer stem cell-like behavior of Hep3B cells. In contrast, depletion of TFF3 increased doxorubicin sensitivity and decreased cancer stem cell-like behavior of Hep3B cells. Correspondingly, TFF3 expression was markedly increased in Hep3B cells with acquired doxorubicin resistance, while the depletion of TFF3 resulted in re-sensitization of the Hep3B cells to doxorubicin. The increased doxorubicin efflux and enhanced cancer stem cell-like behavior of the doxorubicin-resistant Hep3B cells was observed to be dependent on TFF3 expression. In addition, we determined that TFF3-stimulated oncogenicity and chemoresistance in HCC cells was mediated by AKT-dependent expression of BCL-2. Hence, therapeutic inhibition of TFF3 should be considered to hinder HCC progression and overcome intrinsic and acquired chemoresistance in HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/pathology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Trefoil Factor-3/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Female , Follow-Up Studies , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Am J Physiol Renal Physiol ; 311(6): F1360-F1368, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27956381

ABSTRACT

A Ca2+-activated nonselective cation channel (NSCCa) is found in principal cells of the mouse cortical collecting duct (CCD). However, the molecular identity of this channel remains unclear. We used mpkCCDc14 cells, a mouse CCD principal cell line, to determine whether NSCCa represents the transient receptor potential (TRP) channel, the melastatin subfamily 4 (TRPM4). A Ca2+-sensitive single-channel current was observed in inside-out patches excised from the apical membrane of mpkCCDc14 cells. Like TRPM4 channels found in other cell types, this channel has an equal permeability for Na+ and K+ and has a linear current-voltage relationship with a slope conductance of ~23 pS. The channel was inhibited by a specific TRPM4 inhibitor, 9-phenanthrol. Moreover, the frequency of observing this channel was dramatically decreased in TRPM4 knockdown mpkCCDc14 cells. Unlike those previously reported in other cell types, the TRPM4 in mpkCCDc14 cells was unable to be activated by hydrogen peroxide (H2O2). Conversely, after treatment with H2O2, TRPM4 density in the apical membrane of mpkCCDc14 cells was significantly decreased. The channel in intact cell-attached patches was activated by ionomycin (a Ca2+ ionophore), but not by ATP (a purinergic P2 receptor agonist). These data suggest that the NSCCa current previously described in CCD principal cells is actually carried through TRPM4 channels. However, the physiological role of this channel in the CCD remains to be further determined.


Subject(s)
Calcium/metabolism , Hydrogen Peroxide/pharmacology , Kidney Tubules, Collecting/drug effects , TRPM Cation Channels/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Ionomycin/pharmacology , Kidney Tubules, Collecting/metabolism , Mice , Phenanthrenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...