Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 940691, 2022.
Article in English | MEDLINE | ID: mdl-36341126

ABSTRACT

Background and purpose: This study aimed to investigate the relationship between neutrophil-to-lymphocyte ratio (NLR) and early neurological deterioration (END) among cases suffering from single subcortical infarction (SSI) and diabetes. Methods: We collected the data of patients with SSI admitted to our hospital between January 2019 and December 2020 retrospectively. A score of ≥2 elevations in overall National Institutes of Health Stroke Scale (NIHSS) score or ≥1 increase in motor NIHSS score in 5-day post-admission was considered END. Furthermore, logistic regression was used to analyze the relationship between NLR and END among SSI cases. Results: Altogether, we enrolled 235 consecutive SSI cases, of which 53 (22.5%) were diagnosed with END, while 93 (39.5%) were diabetic. In patients with diabetes, the value of NLR increased markedly among the patients with END (median, 3.59; IQR, 2.18-4.84) compared to patients without END (median, 2.64; IQR, 1.89-3.18; P = 0.032). Meanwhile, in patients without diabetes, NLR was not significantly associated with END. In the multivariate analysis, NLR values were positively related to END (adjusted odds ratio (OR), 1.768; 95% CI, 1.166-2.682, P = 0.007) upon adjusting age, SSI type, lesion diameter, initial NIHSS, fasting blood glucose (FBG), 2-h postprandial blood glucose (2hPBG), and estimated glomerular filtration rate (eGFR). The subgroup analysis showed that the relationship between NLR and END was more pronounced in the branch atheromatous disease (BAD) (adjusted OR, 1.819; 95% CI, 1.049-3.153, P = 0.033) and anterior SSI subgroups (adjusted OR, 2.102; 95% CI, 1.095-4.037, P = 0.026). Conclusion: NLR value was significantly related to END among SSI patients with diabetes and was recognized as an independent factor in predicting the risk of END.

2.
Diabetes Metab Syndr Obes ; 15: 897-906, 2022.
Article in English | MEDLINE | ID: mdl-35356702

ABSTRACT

Purpose: The intima-media thickness (IMT) is broadly reported to have relationships with non-cardiogenic ischemic stroke and with diabetes. But how does IMT affect the short-term prognosis of stroke seems unknown yet. We investigated the influence of the intima-media thickness at carotid bifurcation (IMTbif) on short-term functional outcomes among non-cardiogenic ischemic stroke patients with and without type 2 diabetes mellitus (T2DM). Patients and Methods: A total of 314 patients with non-cardiogenic ischemic stroke (122 with T2DM and 192 without diabetes) were included in this retrospective study. Poor functional outcome was defined as a modified Rankin Scale (mRS) > 2 at 3 months after stroke onset. Group comparisons were done in favorable and poor outcome groups. Linear regression analysis was utilized to verify the associations between IMTbif and mRS in subgroups with and without diabetes, respectively. Results: The median IMTbif of total patients was 1.40mm. Patients with poor outcomes were significantly older, had higher National Institutes of Health Stroke Scale (NIHSS) scores, lower haemoglobin, higher fasting glucose and higher systolic blood pressure values. Their IMTbif levels were also markedly higher. Among 122 included stroke patients with T2DM, IMTbif levels and NIHSS were independently associated with functional outcomes at 3 months, whereas there was no significant association between IMTbif levels and short-term functional outcomes among patients without diabetes. Conclusion: The IMTbif levels were significantly associated with 3-month functional outcomes in non-cardiogenic ischemic stroke patients with T2DM. The ultrasound detection of the IMTbif therefore suggests a prognostic value among patients with stroke and T2DM.

3.
Chemosphere ; 258: 127276, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32947657

ABSTRACT

It is crucial for water environment security to remove its p-arsanilic acid (p-ASA) efficiently. Namely, removing p-arsanilic acid from aqueous media through magnetic separation, has become a novel method of removing toxic pollutants from water. Batch adsorption experiments demonstrated a higher adsorption of lignin-based magnetic activated carbon (201.64 mg g-1) toward p-ASA. In addition, LMAC nanoparticles exhibited typical magnetism (35.63 emu g-1 of saturation magnetization) and could be easily separated from the aqueous solution. Meanwhile, the endothermic adsorption of p-ASA over LMAC could spontaneously proceed and be well described by the pseudo-first-order and pseudo-second-order model as well as the intra-particle diffusion model. Moreover, the mechanisms during p-ASA adsorption over LMAC included the electrostatic attraction, surface complexation, π-π stacking and hydrogen bonding interaction. Importantly, lignin-based magnetic activated carbon has high absorbability and preferable reusability in real water samples. Consequently, this paper provides insights into preparation of the lignin-based magnetic activated carbon may be potential adsorbents for the remediation of organoarsenic compounds.


Subject(s)
Arsanilic Acid/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Charcoal , Kinetics , Lignin , Magnetic Phenomena , Magnetics , Magnets , Water , Water Pollutants, Chemical/analysis
4.
RSC Adv ; 10(5): 3013-3019, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-35496085

ABSTRACT

Transition metal salts were employed as the catalysts to improve the selective degradation of the α-O-4 lignin model compound (benzyl phenyl ether (BPE)) in the solvothermal system. The results concluded that most of the transition metal salts could enhance BPE degradation. Among which, NiSO4·6H2O exhibited the highest performance on BPE degradation (90.8%) for 5 h and phenol selectivity (53%) for 4 h at 200 °C. In addition, the GC-MS analysis indicated that the intermediates during BPE degradation included a series of aromatic compounds, such as phenol, benzyl methyl ether and benzyl alcohol. Furthermore, the mechanisms for BPE degradation and phenol selectivity in the NiSO4·6H2O system involved the synergetic effects between the acid catalysis and coordination catalysis, which caused the effective and selective cleavage of the C-O bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...