Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.578
Filter
1.
J Med Genet ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38724173

ABSTRACT

BACKGROUND: Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS: Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS: SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION: This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.

2.
Ear Nose Throat J ; : 1455613241256520, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808678

ABSTRACT

Malignant melanoma originating from the sphenoid sinus is an extremely rare but aggressive tumor of the head and neck. A 57-year-old man had a 1 month history of headache, right trigeminal paresthesias, and upper lid ptosis. Magnetic resonance imaging showed a large mass in the right sphenoid sinus and an invasion of the right cavernous sinus and clivus. The patient underwent endoscopic endonasal transsphenoidal surgery, and pathologically revealed malignant melanoma. One month after the operation, the patient was treated with radiation therapy. Unfortunately, the patient died of distant metastasis 2 years later. Due to its rarity, there is still no effective treatment strategy and no way to assess the progression of malignant melanoma.

3.
iScience ; 27(6): 109887, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38784002

ABSTRACT

Precocious puberty, a pediatric endocrine disorder classified as central precocious puberty (CPP) or peripheral precocious puberty (PPP), is influenced by diet, gut microbiota, and metabolites, but the specific mechanisms remain unclear. Our study found that increased alpha-diversity and abundance of short-chain fatty acid-producing bacteria led to elevated levels of luteinizing hormone and follicle-stimulating hormone, contributing to precocious puberty. The integration of specific microbiota and metabolites has potential diagnostic value for precocious puberty. The Prevotella genus-controlled interaction factor, influenced by complex carbohydrate consumption, mediated a reduction in estradiol levels. Interactions between obesity-related bacteria and metabolites mediated the beneficial effect of seafood in reducing luteinizing hormone levels, reducing the risk of obesity-induced precocious puberty, and preventing progression from PPP to CPP. This study provides valuable insights into the complex interplay between diet, gut microbiota and metabolites in the onset, development and clinical classification of precocious puberty and warrants further investigation.

4.
Orphanet J Rare Dis ; 19(1): 194, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741208

ABSTRACT

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are a group of rare hereditary connective tissue disorders. EDS is clinically and genetically heterogeneous and usually involves multiple systems. There are 14 subtypes of EDS with hallmark features including joint hypermobility, skin hyperextensibility, and tissue fragility. The clinical manifestations and their severity differ among the subtypes, encompassing recurrent joint dislocations, scoliosis, arterial aneurysm and dissection, and organ rupture. Challenges in diagnosis and management arise from the complexity of the disease, which is further complicated by its rarity. The development of clinical guidelines and implementation of coordinated multi-disciplinary team (MDT) approaches have emerged as global priorities. MAIN BODY: Chinese Multi-Disciplinary Working Group on the Ehlers-Danlos Syndromes was therefore established. Healthcare professionals were recruited from 25 top hospitals across China. The experts are specialized in 24 fields, including genetics, vascular surgery, dermatology, and orthopedics, as well as nursing care, rehabilitation, psychology, and nutrition. Based on GRADE methodology, the Guidelines were written by the Group supervised by methodologists, following a systemic review of all 4453 articles in PubMed published before August 9, 2023, using the search term "Ehlers Danlos". A coordinated MDT approach for the diagnosis and management of EDS is highly recommended by the Group, along with 29 specific recommendations addressing key clinical questions. In addition to the treatment plan, the Guidelines also emphasize integrating support from nursing care, rehabilitation, psychology, and nutrition. This integration not only facilitates recovery in hospital settings, but most importantly, the transition from an illness-defined life to a more "normalized" life. CONCLUSION: The first guidelines on EDS will shorten the diagnostic odyssey and solve the unmet medical needs of the patients. This article is a synopsis of the full guidelines.


Subject(s)
Ehlers-Danlos Syndrome , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/therapy , Ehlers-Danlos Syndrome/genetics , Humans , China , Practice Guidelines as Topic
5.
Article in English | MEDLINE | ID: mdl-38757550

ABSTRACT

Cofrogliptin (HSK7653) is a long-acting dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes mellitus with a twice-monthly dosing regimen. This study included 62 participants (48 without food effect, 14 with food effect) receiving single doses of HSK7653 (5, 10, 25, 50, 100, and 150 mg) or placebo. Pharmacokinetic samples were collected over 24 hours postdosing and sampling times are aligned with 12-lead electrocardiograms (ECGs) which were derived from continuous ECG recordings. For the concentration-QT interval corrected for heart rate (C-QTc) analysis, we used linear mixed-effects modeling to characterize the correlation between plasma concentrations of HSK7653 and the change from baseline in the QT interval which was corrected by Fridericia's formula (ΔQTcF). The result showed that a placebo-corrected Fridericia corrected QT interval (ΔΔQTcF) prolongation higher than 10 milliseconds is unlikely at the mean maximum observed concentration (Cmax) (411 ng/mL) associated with the recommended therapeutic doses (25 mg twice-monthly), even at the highest supratherapeutic concentration (2425 ng/mL). Thus, HSK7653 does not significantly affect QT prolongation at either recommended doses or the highest supratherapeutic concentration.

6.
Environ Res ; 255: 119162, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762003

ABSTRACT

In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.

7.
PLoS One ; 19(5): e0302468, 2024.
Article in English | MEDLINE | ID: mdl-38696445

ABSTRACT

In order to further clarify the shale oil accumulation period of the Chang 7 member of the Mesozoic Triassic Yanchang Formation in the Zhijing-Ansai area of the central Ordos Basin, Using fluid inclusion petrography analysis, microscopic temperature measurement, salinity analysis and fluorescence spectrum analysis methods, combined with the burial history-thermal history recovery in the area, the oil and gas accumulation period of the Chang 7 member of the Yanchang Formation in the Zhijing-Ansai area was comprehensively analyzed. Sixteen shale oil reservoir samples of the Mesozoic Triassic Yanchang Formation in seven typical wells in the study area were selected.The results show that the fluid inclusions in the Chang 7 member of Yanchang Formation can be divided into two stages. The first stage inclusions mainly develop liquid hydrocarbon inclusions and a large number of associated brine inclusions, which are mainly beaded in fracture-filled quartz and fracture-filled calcite. The fluorescence color is blue and blue-green, and the homogenization temperature of the associated brine inclusions is between 90-110°C. The second stage inclusions are mainly gas-liquid two-phase hydrocarbon inclusions, gas inclusions and asphalt inclusions. Most of them are distributed in the fracture-filled quartz, and the temperature of the associated brine inclusions is between 120-130°C. Fluid inclusions in Chang 7 member of the Yanchang Formation can be divided into two stages. The CO2 inclusions and high temperature inclusions in the Chang 7 member of the Yanchang Formation are mainly derived from deep volcanic activity in the crust.


Subject(s)
Oil and Gas Fields , China , Geologic Sediments/analysis , Temperature , Petroleum/analysis , Hydrocarbons/analysis
8.
Pharmaceuticals (Basel) ; 17(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38794153

ABSTRACT

The ancient Chinese medical book "Compendium of Materia Medica" records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus pyrifolia (Burm.f.) Nakai seed components have not been studied. Ultraviolet light (UV) causes skin inflammation, damages the skin barrier, and is an important cause of skin photoaging. Therefore, UV light with a wavelength of 365 nm was used to irradiate HaCaT and mice. Western blot, real-time quantitative polymerase chain reaction, and fluorescence imaging system were used to explore its anti-UVA mechanism. Dialysis membrane and nuclear magnetic resonance were used for the chemical constituent analysis of pear seed water extract (PSWE). We found that PSWE can significantly reduce UVA-induced skin cell death and mitogen-activated protein kinase phosphorylation and can inhibit the mRNA expression of UVA-induced cytokines (including IL-1ß, IL-6, and TNF-α). In addition, PSWE can also reduce the generation of oxidative stress within skin cells. In vivo experimental studies found that PSWE pretreatment effectively reduced transepidermal water loss, inflammation, redness, and dryness in hairless mice. The molecular weight of the active part of pear water extract is approximately 384. Based on the above results, we first found that pear seeds can effectively inhibit oxidative stress and damage caused by UVA. It is a natural extract with antioxidant properties and anti-aging activity that protects skin cells and strengthens the skin barrier.

9.
Bioresour Technol ; 402: 130777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701978

ABSTRACT

This research systematically assessed the changes in carbon, nitrogen and microbial profiling during pig and chicken manure transformation by black soldier fly larvae (BSFL) and subsequent composting process. BSFL had higher conversion efficiency for chicken manure. The pH, phosphorus and potassium contents in fresh BSFL frass increased than raw manure, but conductivity, total-/nitrate-/ammonium-nitrogen decreased. After BSFL conversion, pig manure had a larger nitrogen loss (25 %) while chicken manure had a larger carbon loss (32 %). During subsequent composting, the indicator changes (e.g. humus, ammonium nitrogen) in frass composts basically remained stable after 20-30 days. Compared to natural composts, frass composts had higher humification degree, cellulase activities, and more cellulose-degrading bacteria. Subsequent composting further reduced potential pathogens (reduced by 98.9 %-99.7 % than raw manure), and elevated the aromaticity and humification of frass. The findings gave an insight into the maturation management of manure-sourced insect frass.


Subject(s)
Chickens , Composting , Larva , Manure , Nitrogen , Animals , Composting/methods , Carbon , Swine , Diptera , Hydrogen-Ion Concentration , Phosphorus , Soil/chemistry , Biodegradation, Environmental
10.
Int J Biol Macromol ; 269(Pt 1): 131824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697411

ABSTRACT

Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.


Subject(s)
Antioxidants , Bandages , Beta vulgaris , Cellulose , Hydrogels , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Hydrogen-Ion Concentration , Antioxidants/pharmacology , Antioxidants/chemistry , Beta vulgaris/chemistry , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silanes/chemistry , Pigments, Biological/chemistry , Pigments, Biological/pharmacology
11.
Environ Pollut ; 352: 124125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740244

ABSTRACT

Nanoplastics pollution has emerged as a global issue due to its widespread potential toxicity. This study delved in to toxic effects of nanoplastics on juvenile P. clarkii and molecular mechanisms from perspectives of growth, biochemical, histopathological analysis and transcriptome level for the first time. The findings of this study indicated that nanoplastics of different concentrations have varying influence mechanisms on juvenile P. clarkii. Nanoplastics have inhibitory effects on growth of juvenile P. clarkii, can induce oxidative stress. The biochemical analysis and transcriptome results indicated that 10 mg/L nanoplastics can activate the antioxidant defense system and non-specific immune system in juvenile P. clarkii, and affect energy metabolism and oxidative phosphorylation. While 20 mg/L and 40 mg/L have a destructive influence on the immune function in juvenile P. clarkii, leading to lipid peroxidation and oxidative damage, and induce apoptosis, can affect ion transport and osmotic pressure regulation. The findings of this study can offer foundational data for delving further into impacts of nanoplastics on crustaceans and toxicity mechanism.

12.
Cardiovasc Diabetol ; 23(1): 129, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622592

ABSTRACT

The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.


Subject(s)
Cyclophilin A , Diet, High-Fat , Ferroptosis , Animals , Rats , Cyclophilin A/metabolism , Myocardium/metabolism , Obesity/metabolism
13.
Article in English | MEDLINE | ID: mdl-38689043

ABSTRACT

Livestock manure is one of the most important pools of antibiotic resistance genes (ARGs) in the environment. Aerobic composting can effectively reduce the spread of antibiotic resistance risk in livestock manure. Understanding the effect of aerobic composting process parameters on manure-sourced ARGs is important to control their spreading risk. In this study, the effects of process parameters on ARGs during aerobic composting of pig manure were explored through data mining based on 191 valid data collected from literature. Machine learning (ML) models (XGBoost and Random Forest) were utilized to predict the rate of ARGs changes during pig manure composting. The model evaluation index of the XGBoost model (R2 = 0.651) was higher than that of the Random Forest (R2 = 0.490), indicating that XGBoost had better prediction performance. Feature importance was further calculated for the XGBoost model, and the XGBoost black box model was interpreted by Shapley additive explanations analysis. Results indicated that the influencing factors on the ARGs variation in pig manure were sequentially divided into thermophilic period, total composting period, composting real time, and thermophilic stage average temperature. The findings gave an insight into the application of ML models to predict and decipher the ARG changes during manure composting and provided suggestions for better composting manipulation and optimization of process parameters.

14.
Acta Psychol (Amst) ; 246: 104251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626598

ABSTRACT

In middle childhood, children's sense of fairness further develops, they are willing to pay a cost to maintain equality. Win-win and lose-lose are two forms of equality. Win-win equality refers to both parties maximizing benefits, while lose-lose equality means both parties incurring the maximum loss. Win-win equality allows third party upholding fairness to gain more reputational benefits without the violator being punished, embodying the principle of "benefiting oneself without harming others". On the other hand, lose-lose equality is a more deterrent form of fairness with the violator getting punished, and the third-party might experience a situation of "effort without appreciation." However, the specific form of equality which school-aged children prefer still requires further exploration. Therefore, adopting the dictator game paradigm of third-party punishment, we design two experiments to investigate the fairness preference of first to fourth-grade children when acting as a third party and to clarify patterns of age-related changes. Study 1 (N = 111) explored children's preferred form of fairness under advantageous inequity conditions. Study 2 (N = 122) further examined children's fairness preferences in disadvantageous inequity situations. The findings suggest that when confronted with inequitable distributions, whether rooted in disadvantageous or advantageous inequity, children display a notable tendency to utilize third-party punishment to achieve an equal allocation. Meanwhile, this tendency strengthens as they progress in grade levels. Notably, children consistently manifest a preference for win-win equality, highlighting their inclination towards mutually beneficial outcomes.


Subject(s)
Punishment , Humans , Child , Male , Female , Choice Behavior/physiology
15.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683997

ABSTRACT

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Microfluidics/methods , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/blood , Phenotype , Cell Line, Tumor , Immunotherapy/methods , Gene Expression Profiling/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
16.
J Mater Chem B ; 12(20): 4833-4842, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38647018

ABSTRACT

Ultrasmall iron oxide nanoparticles (USIO NPs) are expected to become the next generation T1 contrast agents; however, their diagnostic and therapeutic potential for primary brain tumors (such as glioblastoma multiforme, GBM) is yet to be explored. At present, the main challenge is the effective hindering of biological barriers, including the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB). Herein, we aimed to investigate whether the USIO NPs, in combination with MR-guided focused ultrasound (MRgFUS), could intensify MR imaging of GBM. In this study, we presented zwitterionic USIO NPs for enhanced MR imaging of both xenografted and orthotopic GBM mouse models. We first synthesized citric-stabilized USIO NPs with a size of 3.19 ± 0.76 nm, modified with ethylenediamine, and decorated with 1,3-propanesultone (1,3-PS) to form USIO NPs-1,3-PS. The obtained USIO NPs-1,3-PS exhibited good cytocompatibility and cellular uptake efficiency. MRgFUS, in combination with microbubbles, provided a non-invasive and safe technique for BBB opening, which, in turn, promoted the delivery of USIO NPs-1,3-PS in orthotopic GBM. This developed USIO NP nanoplatform may improve the precision imaging of solid tumors and therapeutic efficacy in the central nervous system.


Subject(s)
Brain Neoplasms , Contrast Media , Glioblastoma , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Animals , Mice , Humans , Magnetic Iron Oxide Nanoparticles/chemistry , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Contrast Media/chemistry , Mice, Nude , Particle Size , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Mice, Inbred BALB C
17.
Cell Stem Cell ; 31(5): 717-733.e8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38593797

ABSTRACT

Many patient-derived tumor models have emerged recently. However, their potential to guide personalized drug selection remains unclear. Here, we report patient-derived tumor-like cell clusters (PTCs) for non-small cell lung cancer (NSCLC), capable of conducting 100-5,000 drug tests within 10 days. We have established 283 PTC models with an 81% success rate. PTCs contain primary tumor epithelium self-assembled with endogenous stromal and immune cells and show a high degree of similarity to the original tumors in phenotypic and genotypic features. Utilizing standardized culture and drug-response assessment protocols, PTC drug-testing assays reveal 89% overall consistency in prospectively predicting clinical outcomes, with 98.1% accuracy distinguishing complete/partial response from progressive disease. Notably, PTCs enable accurate prediction of clinical outcomes for patients undergoing anti-PD1 therapy by combining cell viability and IFN-γ value assessments. These findings suggest that PTCs could serve as a valuable preclinical model for personalized medicine and basic research in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Precision Medicine , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Humans , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/immunology , Immunotherapy/methods , Animals , Female , Male
18.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1050-1064, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658148

ABSTRACT

Heterotrimeric GTP-binding protein (G-proteins) complex, which consists of Gα, Gß and Gγ subunits, plays critical roles in defense signaling. Arabidopsis genome contains only a single Gß-encoding gene, AGB1. Loss function of AGB1 in Arabidopsis results in enhanced susceptibility to a wide range of pathogens. However, the function of soybean AGB1 in immunity has not been previously interrogated. Bioinformatic analysis indicated that there are four GmAGB1 homologous genes in soybean genome, sharing homology of 86%-97%. To overcome the functional redundancy of these GmAGB1 homologs, virus-induced gene silencing (VIGS) mediated by the bean pod mottle virus (BPMV) was used to silence these four genes simultaneously. As expected, these four GmAGB1 homologous genes were indeed silenced by a single BPMV-VIGS vector carrying a conserved fragments among these four genes. A dwarfed phenotype was observed in GmAGB1s-silenced soybean plants, suggesting that GmAGB1s play a crucial role in growth and development. Disease resistance analysis indicated that silencing GmAGB1s significantly compromised the resistance of soybean plants against Xanthomonas campestris pv. glycinea (Xag). This reduced resistance was correlated with the decreased accumulation of pathogen-induced reactive oxygen species (ROS) and the reduced activation of GmMPK3 in response to flg22, a conserved N-terminal peptide of flagellin protein. These results indicate that GmAGB1 functions as a positive regulator in disease resistance and GmAGB1 is indispensable for the ROS production and GmMPK3 activation induced by pathogen infection. Yeast two hybrid assay showed that GmAGB1 interacted with GmAGG1, suggesting that an evolutionary conserved heterotrimeric G protein complex similarly functions in soybean.


Subject(s)
Disease Resistance , Gene Silencing , Glycine max , Plant Diseases , Glycine max/genetics , Glycine max/immunology , Glycine max/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Comovirus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/immunology , Gene Expression Regulation, Plant , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/immunology , Xanthomonas , Reactive Oxygen Species/metabolism
19.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
20.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560106

ABSTRACT

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...