Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(4): 784-790, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36534524

ABSTRACT

PURPOSE: We previously demonstrated that high levels of circulating methylated DNA are associated with subsequent disease progression in women with metastatic breast cancer (MBC). In this study, we evaluated the clinical utility of a novel liquid biopsy-breast cancer methylation (LBx-BCM) prototype assay using the GeneXpert cartridge system for early assessment of disease progression in MBC. EXPERIMENTAL DESIGN: The 9-marker LBx-BCM prototype assay was evaluated in TBCRC 005, a prospective biomarker study, using plasma collected at baseline, week 4, and week 8 from 144 patients with MBC. RESULTS: At week 4, patients with MBC with high cumulative methylation (CM) had a significantly shorter median PFS (2.88 months vs. 6.60 months, P = 0.001) and OS (14.52 months vs. 22.44 months, P = 0.005) compared with those with low CM. In a multivariable model, high versus low CM was also associated with shorter PFS (HR, 1.90; 95% CI, 1.20-3.01; P = 0.006). Change in CM from baseline to week 4 (OR, 4.60; 95% CI, 1.77-11.93; P = 0.002) and high levels of CM at week 4 (OR, 2.78; 95% CI, 1.29-5.99; P = 0.009) were associated with progressive disease at the time of first restaging. A robust risk model based on week 4 circulating CM levels was developed to predict disease progression as early as 3 months after initiating a new treatment. CONCLUSIONS: The automated LBx-BCM prototype assay is a promising clinical tool for detecting disease progression a month after initiating treatment in women with MBC undergoing routine care. The next step is to validate its clinical utility for specific treatments.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Female , Humans , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Disease Progression , Liquid Biopsy , Methylation
2.
Am J Clin Pathol ; 156(5): 766-776, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34050358

ABSTRACT

OBJECTIVES: Breast cancer immunohistochemistry (IHC) biomarker testing is limited in low-resource settings, and an alternative solution is needed. A point-of-care mRNA STRAT4 breast cancer assay for ESR1, PGR, ERBB2, and MKi67, for use on the GeneXpert platform, has been recently validated on tissues from internationally accredited laboratories, showing excellent concordance with IHC. METHODS: We evaluated STRAT4/IHC ESR1/estrogen receptor (ER), ERBB2/human epidermal growth factor receptor 2 (HER2) concordance rates of 150 breast cancer tissues processed in Rwanda, with undocumented cold ischemic and fixation time. RESULTS: Assay fail/indeterminate rate was 2.6% for ESR1 and ERBB2. STRAT4 agreement with ER IHC was 92.5% to 93.3% and 97.8% for HER2, for standard (1x) and concentrated (4x) reagent-conserving protocols, respectively. Eleven of 12 discordant ER/ESR1 cases were ESR1- negative/IHC-positive. These had low expression of ER by IHC in mostly very small tumor areas tested (7/12; <25 mm2). In two of three discordant HER2 cases, the STRAT4-ERBB2 result correlated with the subsequent fluorescence in situ hybridization (FISH) result. STRAT4-ERBB2 results in 9 of 10 HER2-IHC equivocal cases were concordant with FISH. CONCLUSIONS: The STRAT4 assay is an alternative for providing quality-controlled breast cancer biomarker data in laboratories unable to provide quality and/or cost-efficient IHC services.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/diagnosis , Multiplex Polymerase Chain Reaction/methods , RNA, Messenger/analysis , Developing Countries , Female , Humans , Rwanda
3.
Breast Cancer Res Treat ; 172(2): 327-338, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30120700

ABSTRACT

PURPOSE: The methods (IHC/FISH) typically used to assess ER, PR, HER2, and Ki67 in FFPE specimens from breast cancer patients are difficult to set up, perform, and standardize for use in low and middle-income countries. Use of an automated diagnostic platform (GeneXpert®) and assay (Xpert® Breast Cancer STRAT4) that employs RT-qPCR to quantitate ESR1, PGR, ERBB2, and MKi67 mRNAs from formalin-fixed, paraffin-embedded (FFPE) tissues facilitates analyses in less than 3 h. This study compares breast cancer biomarker analyses using an RT-qPCR-based platform with analyses using standard IHC and FISH for assessment of the same biomarkers. METHODS: FFPE tissue sections from 523 patients were sent to a College of American Pathologists-certified central reference laboratory to evaluate concordance between IHC/FISH and STRAT4 using the laboratory's standard of care methods. A subset of 155 FFPE specimens was tested for concordance with STRAT4 using different IHC antibodies and scoring methods. RESULTS: Concordance between STRAT4 and IHC was 97.8% for ESR1, 90.4% for PGR, 93.3% for ERBB2 (IHC/FISH for HER2), and 78.6% for MKi67. Receiver operating characteristic curve (ROC) area under the curve (AUC) values of 0.99, 0.95, 0.99, and 0.85 were generated for ESR1, PGR, ERBB2, and MKi67, respectively. Minor variabilities were observed depending on the IHC antibody comparator used. CONCLUSION: Evaluation of breast cancer biomarker status by STRAT4 was highly concordant with central IHC/FISH in this blinded, retrospectively analyzed collection of samples. STRAT4 may provide a means to cost-effectively generate standardized diagnostic results for breast cancer patients in low- and middle-income countries.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , RNA, Messenger/genetics , Breast Neoplasms/pathology , Cell Proliferation/genetics , Estrogen Receptor alpha/genetics , Female , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Ki-67 Antigen/genetics , Receptor, ErbB-2/genetics , Receptors, Progesterone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...