Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(13): 9344-9353, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38498940

ABSTRACT

Most photocatalytic and photovoltaic devices operate under broadband, constant illumination. Electron and hole dynamics in these devices, however, are usually measured by using ultrafast pulsed lasers in a narrow wavelength range. In this work, we use excited-state X-ray theory originally developed for transient X-ray experiments to study steady-state photomodulated X-ray spectra. We use this method to attempt to extract electron and hole distributions from spectra collected at a nontime-resolved synchrotron beamline. A set of plasmonic metal core-shell nanoparticles is designed as the control experiment because they can systematically isolate photothermal, hot electron, and thermalized electron-hole pairs in a TiO2 shell. Steady-state changes in the Ti L2,3 edge are measured with and without continuous-wave illumination of the nanoparticle's localized surface plasmon resonance. The results suggest that within error the quasi-equilibrium carrier distribution can be determined even from relatively noisy data with mixed excited-state phenomena. Just as importantly, the theoretical analysis of noisy data is used to provide guidelines for the beamline development of photomodulated steady-state spectroscopy.

2.
ACS Appl Mater Interfaces ; 16(11): 13729-13744, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457643

ABSTRACT

Current electrocatalysts for oxygen evolution reaction (OER) are either expensive (such as IrO2, RuO2) or/and exhibit high overpotential as well as sluggish kinetics. This article reports mesoporous earth-abundant iron (Fe)-nitrogen (N) doped carbon electrocatalysts with iron clusters and closely surrounding Fe-N4 active sites. Unique to this work is that the mechanically stable mesoporous carbon-matrix structure (79 nm in pore size) with well-dispersed nitrogen-coordinated Fe single atom-cluster is synthesized via rapid thermal annealing (RTA) within only minutes using a self-assembled bottlebrush block copolymer (BBCP) melamine-formaldehyde resin composite template. The resulting porous structure and domain size can be tuned with the degree of polymerization of the BBCP backbone, which increases the electrochemically active surface area and improves electron transfer and mass transport for an effective OER process. The optimized electrocatalyst shows a required potential of 1.48 V (versus RHE) to obtain the current density of 10 mA/cm2 in 1 M KOH aqueous electrolyte and a small Tafel slope of 55 mV/decade at a given overpotential of 250 mV, which is significantly lower than recently reported earth-abundant electrocatalysts. Importantly, the Fe single-atom nitrogen coordination environment facilitates the surface reconstruction into a highly active oxyhydroxide under OER conditions, as revealed by X-ray photoelectron spectroscopy and in situ Raman spectroscopy, while the atomic clusters boost the single atoms reactive sites to prevent demetalation during the OER process. Density functional theory (DFT) calculations support that the iron nitrogen environment and reconstructed oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced. This work has opened a new avenue for simple, rapid synthesis of inexpensive, earth-abundant, tailorable, mechanically stable, mesoporous carbon-coordinated single-atom electrocatalysts that can be used for renewable energy production.

3.
Small ; : e2308690, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470201

ABSTRACT

Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have ß-MoB, MoB2 , and Mo2 B5 phases. Among these phases, ß-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9  m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.

4.
Chem Soc Rev ; 53(6): 2932-2971, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38380656

ABSTRACT

Silver and gold nanoparticles have found extensive biomedical applications due to their strong localized surface plasmon resonance (LSPR) and intriguing plasmonic properties. This review article focuses on the correlation among particle geometry, plasmon properties and biomedical applications. It discusses how particle shape and size are tailored via controllable synthetic approaches, and how plasmonic properties are tuned by particle shape and size, which are embodied by nanospheres, nanorods, nanocubes, nanocages, nanostars and core-shell composites. This article summarizes the design strategies for the use of silver and gold nanoparticles in plasmon-enhanced fluorescence, surface-enhanced Raman scattering (SERS), electroluminescence, and photoelectrochemistry. It especially discusses how to use plasmonic nanoparticles to construct optical probes including colorimetric, SERS and plasmonic fluorescence probes (labels/reporters). It also demonstrates the employment of Ag and Au nanoparticles in polymer- and paper-based microfluidic devices for point-of-care testing (POCT). In addition, this article highlights how to utilize plasmonic nanoparticles for in vitro and in vivo bio-imaging based on SERS, fluorescence, photoacoustic and dark-field models. Finally, this article shows perspectives in plasmon-enhanced photothermal and photodynamic therapy.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods , Spectrum Analysis, Raman/methods
5.
J Mater Chem B ; 11(32): 7629-7640, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37401386

ABSTRACT

Hydrogels with adaptable optical and mechanical characteristics show considerable promise for light delivery in vivo with neuroengineering applications. However, the unlinked amorphous polymer chains within hydrogels can cause volumetric swelling after water absorption under physiological conditions over time. Chemically cross-linked poly(vinyl alcohol) (PVA) hydrogels showcase fatigue-resistant attributes and promising biocompatibility for the manufacture of soft neural probes. However, possible swelling of the PVA hydrogel matrix could impact the structural stability of hydrogel-based bioelectronics and their long-term in vivo functionality. In this study, we utilized an atomic layer deposition (ALD) technique to generate an inorganic, silicon dioxide (SiO2) coating layer on chemically cross-linked PVA hydrogel fibers. To evaluate the stability of SiO2-coated PVA hydrogel fibers mimicking the in vivo environment, we conducted accelerated stability tests. SiO2-coated PVA hydrogel fibers showed improved stability over a one-week incubation period under a harsh environment, preventing swelling and preserving their mechanical and optical properties compared to uncoated fibers. These SiO2-coated PVA hydrogel fibers demonstrated nanoscale polymeric crystalline domains (6.5 ± 0.1 nm), an elastic modulus of 73.7 ± 31.7 MPa, a maximum elongation of 113.6 ± 24.2%, and minimal light transmission loss (1.9 ± 0.2 dB cm-1). Lastly, we applied these SiO2-coated PVA hydrogel fibers in vivo to optically activate the motor cortex of transgenic Thy1::ChR2 mice during locomotor behavioral tests. This mouse cohort was genetically modified to express the light-sensitive ion channel, channelrhodopsin-2 (ChR2), and implanted with hydrogel fibers to deliver light to the motor cortex area (M2). Light stimulation via hydrogel fibers resulted in optogenetically modulated mouse locomotor behaviors, including increased contralateral rotation, mobility speeds, and travel distances.


Subject(s)
Hydrogels , Silicon Dioxide , Animals , Mice , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Prostheses and Implants , Water/chemistry
6.
Anal Chim Acta ; 1203: 339721, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35361421

ABSTRACT

An ultrasensitive plasmonic near-infrared fluorescent biosensor substrate has been developed for detection of glial fibrillary acidic protein (GFAP) biomarker in blood plasma, an important protein biomarker of traumatic brain injury (TBI). To minimize the interference from blood plasma sample matrix, a near-infrared fluorophore in the first biological transparency window is used in the biosensor. To amplify the fluorescence signals, a plasmonic gold nanopyramid array has been coupled to the fluorophore. Finite-difference time-domain simulation reveals that the excitation enhancement is primarily responsible for the fluorescence enhancement owing to the intense local electric field excited on the corners and edges. As a result, this biosensor exhibits a lower limit of detection of 0.6 pg/mL toward detection of GFAP in blood plasma.


Subject(s)
Brain Injuries, Traumatic , Glial Fibrillary Acidic Protein , Biomarkers/blood , Biosensing Techniques , Brain Injuries, Traumatic/diagnostic imaging , Fluorescence , Glial Fibrillary Acidic Protein/blood , Humans
7.
Chem Soc Rev ; 51(1): 329-375, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34897302

ABSTRACT

This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Point-of-Care Systems , SARS-CoV-2 , Spectrum Analysis, Raman
8.
Biosens Bioelectron ; 177: 112967, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33429202

ABSTRACT

Currently colorimetric paper lateral flow strips (PLFS) encounter two major limitations, that is, low sensitivity and severe interference from complex sample matrices such as blood. These shortcomings limit their application in detection of low-concentration analytes in complex samples. To solve these problems, a PLFS has been developed by utilizing surface-enhanced Raman scattering (SERS) for sensing signal transduction. In particular, a hierarchical three-dimensional nanostructure has been designed to create "hot spots", which can significantly amplify the SERS sensing signal, leading to high sensitivity. As a result, this PLFS has demonstrated a limit of detection (LOD) of 5.0 pg mL-1 toward detection of S-100ß, a traumatic brain injury (TBI) protein biomarker in blood plasma. The PLFS has been successfully used for rapid measurement of S-100ß in clinical TBI patient samples taken in the emergency department. Availability of PLFS for blood testing would shift the paradigm of TBI patient management and clinical outcome in emergency departments. It is expected that this type of PLFS can be adapted for rapid detection of various human diseases due to its capability of measuring a low level of protein blood biomarkers in complex human fluids.


Subject(s)
Biosensing Techniques , Brain Injuries, Traumatic , Biomarkers , Humans , Plasma , S100 Calcium Binding Protein beta Subunit , Spectrum Analysis, Raman
9.
Anal Chem ; 93(3): 1326-1332, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33347264

ABSTRACT

Conventional paper lateral flow assays have low sensitivity and suffer from severe interference from complex human fluid sample matrices, which prevents their practical application in the testing of whole blood samples in the point-of-care settings. To solve this problem, gold nanostar@Raman reporter@silica-sandwiched nanoparticles have been developed as the surface-enhanced Raman scattering (SERS) probes for sensing transduction; and a functionalized filter membrane assembly has been designed and constructed in the paper-based lateral flow strip (PLFS) as a built-in plasma separation unit. In this "on-strip" plasma separation unit, three layers of filter membranes are stacked and surface-modified to maximize the separation efficiency and the plasma yield. As a result, the integrated PLFS has been successfully used for the detection of carcinoembryonic antigen (CEA) in 30 µL of whole blood with the assistance of a portable Raman reader, achieving a limit of detection of 1.0 ng mL-1. In short, this report presents an inexpensive, disposable, portable, and field-deployable paper-based device as a general point-of-care testing tool for protein biomarker detection in a drop of whole blood.


Subject(s)
Carcinoembryonic Antigen/blood , Reagent Strips/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Paper , Silicon Dioxide/chemistry , Spectrum Analysis, Raman
10.
J Biotechnol ; 326: 48-51, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33373624

ABSTRACT

Cannabis sativa (Cannabis) is a multipurpose plant species consisting of specific lineages that for centuries has either been artificially selected for the production of fiber or the psychoactive drug Δ9-tetrahydrocannabinol (THC). With the recent lifting of previous legal restrictions on consuming Cannabis, there has been a resurgence of interest in understanding and manipulating Cannabis genetics to enhance its compositions. Yet, recently developed approaches are not amenable to high-throughput gene stacking to study multi-genic traits. Here, we demonstrate an efficient nanoparticle-based transient gene transformation protocol where multiple gene plasmids can be expressed simultaneously in intact Cannabis leaf cells in a very short time (5 days). Constructs encoding two soybean transcription factors were co-grafted onto poly-ethylenimine cationic polymer-modified silicon dioxide-coated gold nanoparticles (PEI-Au@SiO2). Infiltration of the DNA-PEI-Au@SiO2 into Cannabis leaf tissues resulted in the transcription of both soybean genes and the localization of fluorescent-tagged transcription factor proteins in the nuclei of Cannabis leaf cells including the trichomes, which are the cell types that biosynthesize valuable cannabinoid and terpene metabolites. Our study exemplifies a rapid transient gene transformation approach that will be useful to study the effects of gene stacking in Cannabis.


Subject(s)
Cannabis , Metal Nanoparticles , Cannabis/genetics , Gold , Silicon Dioxide , Transformation, Genetic
11.
Nanoscale ; 12(43): 22036-22041, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33146197

ABSTRACT

The chemical and electromagnetic (EM) enhancements both contribute to surface-enhanced Raman scattering (SERS). It is well-known that the EM enhancement is induced by the intense local field of surface plasmon resonance (SPR). This report shows that the polarizability of the molecules adsorbed on the metal surface can lead to another channel for the EM field enhancement. When aromatic molecules are covalently bonded to the Au surface, they strongly interact with the plasmon, leading to a modification of the absorption spectrum and a strong SERS signal. The effect is seen in both 3 nm-Au nanoparticles with a weak SPR and 15 nm-Au nanoparticles with a strong SPR, suggesting that the coupling is through both EM field and chemical means. Linear-chain molecules on the 3 nm-Au nanoparticles do not have a SERS signal. However, when the aromatic and linear molecules are co-adsorbed, the strong SPR/molecular polarizability interaction spatially extends the local EM field, leading to a strong SERS signal from the linear-chain molecules. The results show that aromatic molecules immobilized on Au can create "hot spots" just like plasmonic nanostructures.

12.
J Chem Phys ; 152(22): 220901, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32534522

ABSTRACT

In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a "plasmonic photosensitizer." This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices.

13.
Inhal Toxicol ; 32(1): 24-38, 2020 01.
Article in English | MEDLINE | ID: mdl-32028803

ABSTRACT

Objective: In this study, we compared in vitro and in vivo bioactivity of nitrogen-doped multi-walled carbon nanotubes (NDMWCNT) to MWCNT to test the hypothesis that nitrogen doping would alter bioactivity.Materials and Methods: High-resolution transmission electron microscopy (TEM) confirmed the multilayer structure of MWCNT with an average layer distance of 0.36 nm, which was not altered by nitrogen doping: the nanomaterials had similar widths and lengths. In vitro studies with THP-1 cells and alveolar macrophages from C57BL/6 mice demonstrated that NDMWCNT were less cytotoxic and stimulated less IL-1ß release compared to MWCNT. For in vivo studies, male C57BL/6J mice received a single dose of dispersion medium (DM), 2.5, 10 or 40 µg/mouse of NDMWCNT, or 40 µg/mouse of MWCNT by oropharyngeal aspiration. Animals were euthanized between 1 and 7 days post-exposure for whole lung lavage (WLL) studies.Results and Discussion: NDMWCNT caused time- and dose-dependent pulmonary inflammation. However, it was less than that caused by MWCNT. Activation of the NLRP3 inflammasome was assessed in particle-exposed mice by determining cytokine production in WLL fluid at 1 day post-exposure. Compared to DM-exposed mice, IL-1ß and IL-18 were significantly increased in MWCNT- and NDMWCNT-exposed mice, but the increase caused by NDMWCNT was less than MWCNT. At 56 days post-exposure, histopathology determined lung fibrosis in MWCNT-exposed mice was greater than NDMWCNT-exposed mice.Conclusions: These data indicate nitrogen doping of MWCNT decreases their bioactivity, as reflected with lower in vitro and in vivo toxicity inflammation and lung disease. The lower activation of the NLRP3 inflammasome may be responsible. Abbreviations: NDMWCNT: nitrogen-doped multi-walled carbon nanotubes; MWCNT: multi-walled carbon nanotubes; TEM: transmission electron microscopy; HRTEM: high resolution transmission electron microscopy; IL-1ß: interleukin-1ß; DM: dispersion medium; WLL: whole lung lavage; IL-18: interleukin-18; GSD: geometric standard deviation; XPS: X-ray photoelectron spectroscopy; SEM: standard error of the mean; PMA: phorbol 12-myristate 13-acetate; LPS: lipopolysacharride; LDH: lactate dehydrogenase; AM: alveolar macrophage; PMN: polymorphonuclear leukocyte.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Macrophages, Alveolar/drug effects , Nanotubes, Carbon/toxicity , Nitrogen/toxicity , Pneumonia/chemically induced , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/analysis , Dose-Response Relationship, Drug , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Lung/immunology , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Male , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Particle Size , Pneumonia/immunology , Pneumonia/pathology , Surface Properties , THP-1 Cells , Time Factors
14.
Nanoscale Horiz ; 4(2): 516-525, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-31463080

ABSTRACT

This report presents a facile microfabrication-compatible approach to fabricate a large area of plasmonic nano-pyramid array-based antennas and demonstrates effective light management by tailoring the architecture. First, a long-range ordered gold nano-pyramid array is fabricated, which exhibits strong light scattering. The maximum electric field enhancement (|E|/|E 0 |) of 271 is achieved at the corner but decays rapidly away from the pyramid bottom. After the gold nanopyramid array is coupled to a gold film, strong light scattering is converted into strong light absorption due to the excitation of a spectrally tunable plasmonic gap mode, where an intense electric field enhancement of 233 and a strong magnetic field enhancement (|H|/|H 0 |) of 25 are simultaneously excited for a 10 nm silica gap. The electric field decays much slower away from the pyramid bottom while the magnetic field keeps almost constant. In addition, both experiments and finite-difference time-domain (FDTD) simulation have confirmed that strong plasmon-exciton coupling between the plasmonic gap mode and the J-aggregates can take place when the quantum emitters such as J-aggregates are embedded in the gap, creating plexcitons. This can overcome the problems of high energy loss and weak nonlinearity, which are typically associated with surface plasmon polariton (SPP) supported on plasmonic metallic nanostructures. The coherent plasmon-exciton coupling (plexciton) generated by the film-coupled nano-pyramid nanostructure is expected to find promising applications in light-emitting devices, photodetectors, photovoltaics and photoelectrochemical cells.

15.
J Phys Chem C Nanomater Interfaces ; 122(25): 13443-13449, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-30344837

ABSTRACT

A new fabrication route, which combines nanosphere lithography with silicon-based clean-room microfabrication processes, has been developed to produce large-area long-range ordered gold nanoring array patterns in a controllable fashion. Both the experimentation and the finite-difference time-domain (FDTD) simulation show that the surface plasmon resonance peak (SPR) of the nanoring array pattern can be tuned systematically in a large spectral range by varying the geometry parameters such as the ring thickness, the ring height, the ringer outer diameter, and the gap between neighboring rings. For the Au nanoring arrays with a large gap in the absence of plasmon coupling between neighboring rings, the local electromagnetic (EM) field enhancement occurs at both the outer and inner surfaces of individual nanorings; and the periodicity of Au nanoring array has no any effect on the plasmonic properties. For the Au nanoring arrays with a small gap, plasmon coupling takes place between neighboring rings. As a result, the characteristic plasmonic band is split into two new peaks corresponding to a bonding SPR mode and an antibonding SPR mode. The local EM field enhancement becomes stronger with a decrease in the gap between neighboring rings, but the SPR peaks shift away. Therefore, to maximize the surface-enhanced Raman scattering signal, the geometry parameters of the Au nanoring array need to be tuned to balance the contributions from the resonance excitation (spectral overlap) and the local EM field enhancement.

16.
Anal Chim Acta ; 1040: 158-165, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30327106

ABSTRACT

Nutrient pollution is of worldwide environmental and health concerns due to extensive use of nitrogen fertilizers and release of livestock waste, which induces nitrite compounds in aquatic systems. Herein a surface-enhanced Raman scattering (SERS) sensor is developed for nitrite detection based on coupling between the plasmonic gold nanostars and the silver nanopyramid array. When nitrite is present in the assay, an azo group is formed between the 1-naphthylamine-functionalized silver nanopyramids and the 4-aminothiophenol-functionalized gold nanostars. This not only generates the SERS spectral fingerprint for selective detection, but also creates "hot spots" at the gap between the Au nanostars and the Ag nanopyramids where the azo group is located, amplifying SERS signals remarkably. Finite-difference time-domain (FDTD) simulation shows a SERS enhancement factor of 4 × 1010 at the "hot spots". As a result, the SERS sensor achieves a limit of detection of 0.6 pg/mL toward nitrite in water, and enables nitrite detection in real-world river water samples. In addition, this sensor eliminates the use of any Raman reporter and any expensive molecular recognition probe such as antibody and aptamer. This highly sensitive, selective and inexpensive SERS sensor has unique advantages over colorimetric, electrochemical and fluorescent devices for small molecule detection.

17.
ACS Nano ; 12(7): 7117-7126, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29945441

ABSTRACT

For semiconductors photosensitized with organic dyes or quantum dots, transferred electrons are usually considered thermalized at the conduction band edge. This study suggests that the electrons injected from a plasmonic metal into a thin semiconductor shell can be nonthermal with energy up to the plasmon frequency. In other words, the electrons injected into the semiconductor are still hot carriers. Photomodulated X-ray absorption measurements of the Ti L2,3 edge are compared before and after excitation of the plasmon in Au@TiO2 core-shell nanoparticles. Comparison with theoretical predictions of the X-ray absorption, which include the heating and state-filling effects from injected hot carriers, suggests that the electrons transferred from the plasmon remain nonthermal in the ∼10 nm TiO2 shell, due in part to a slow trapping in defect states. By repeating the measurements for spherical, rod-like, and star-like metal nanoparticles, the magnitude of the nonthermal distribution, peak energy, and number of injected hot electrons are confirmed to be tuned by the plasmon frequency and the sharp corners of the plasmonic nanostructure. The results suggest that plasmonic photosensitizers can not only extend the sunlight absorption spectral range of semiconductor-based devices but could also result in increased open circuit voltages and elevated thermodynamic driving forces for solar fuel generation in photoelectrochemical cells.

18.
ACS Appl Mater Interfaces ; 10(8): 6991-7002, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29405051

ABSTRACT

Reactive oxygen species generation efficiency of photosensitizers and hypoxia microenvironment in solid tumor hamper photodynamic therapy (PDT) efficacy. Here, we introduce an efficient inorganic photosensitizer by incorporating plasmonic gold metal nanostructures into Cu2O semiconductors for PDT. By utilizing the plasmon-induced resonance energy transfer (PIRET) process from Au to Cu2O, Au@SiO2@Cu2O (ASC) demonstrates a high singlet oxygen quantum yield of 0.71 under a 670 nm laser irradiation. The ASC is loaded into oxygen self-enriched perfluorohexane (PFH) droplets and coated with liposome (Lip) to form Lip(ASC/PFH) nanocomposites. The achieved Lip(ASC/PFH) shows considerable anticancer efficacy for in vitro cancer cells and in vivo tumor growth. The proposed oxygen self-enriched PIRET-PDT concept has significant implication in PDT design.


Subject(s)
Silicon Dioxide , Copper , Energy Transfer , Fluorocarbons , Gold , Nanocomposites , Photochemotherapy
19.
Nanoscale ; 10(6): 2679-2696, 2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29376162

ABSTRACT

The incorporation of plasmonic metals into semiconductors is a promising route to improve the performance of photocatalysts and photoelectrochemical cells. This article summarizes the three major mechanisms of plasmonic energy transfer from a metal to a semiconductor, including light scattering/trapping, plasmon-induced resonance energy transfer (PIRET) and hot electron injection (also called direct electron transfer (DET)). It also discusses the rational design of plasmonic metal-semiconductor heterojunctions based on the underlying plasmonic energy transfer mechanisms. Moreover, this article highlights the applications of plasmonic photocatalysts and photoelectrochemical cells in solar water splitting, carbon dioxide reduction and environmental pollutant decomposition.

20.
Toxicol Pathol ; 46(1): 62-74, 2018 01.
Article in English | MEDLINE | ID: mdl-28946794

ABSTRACT

Multiwalled carbon nanotube (MWCNT) toxicity after inhalation has been associated with size, aspect ratio, rigidity, surface modification, and reactive oxygen species production. In this study, we investigated a series of cup-stacked MWCNT prepared as variants of the Creos 24PS. Mechanical chopping produced a short version (AR10) and graphitization to remove active reaction sites by extreme heat (2,800°C; Creos 24HT) to test the contribution of length and alteration of potential reaction sites to toxicity. The 3 MWCNT variants were tested in vitro in a human macrophage-like cell model and with C57BL/6 alveolar macrophages for dose-dependent toxicity and NLRP3 inflammasome activation. The 24PS and 24HT variants showed significant dose-dependent toxicity and inflammasome activation. In contrast, the AR10 variant showed no toxicity or bioactivity at any concentration tested. The in vivo results reflected those observed in vitro, with the 24PS and 24HT variants resulting in acute inflammation, including elevated polymorphonuclear counts, Interleukin (IL)-18, cathepsin B, and lactate dehydrogenase in isolated lung lavage fluid from mice exposed to 40 µg MWCNT. Taken together, these data indicate that length, but not the absence of proposed reaction sites, on the MWCNT influences particle bioactivity.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Animals , Humans , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...