Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Biotechnol ; 34(2): 180-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23607309

ABSTRACT

Exploiting the burgeoning fields of genomics, proteomics and metabolomics improves understanding of human physiology and, critically, the mutations that signal disease susceptibility. Through these emerging fields, rational design approaches to diagnosis, drug development and ultimately personalized medicine are possible. Personalized medicine and point-of-care testing techniques must fulfill a host of constraints for real-world applicability. Point-of-care devices (POCDs) must ultimately provide a cost-effective alternative to expensive and time-consuming laboratory tests in order to assist health care personnel with disease diagnosis and treatment decisions. Sensor technologies are also expanding beyond the more traditional classes of biomarkers--nucleic acids and proteins--to metabolites and direct detection of pathogens, ultimately increasing the palette of available techniques for the use of personalized medicine. The technologies needed to perform such diagnostics have also been rapidly evolving, with each generation being increasingly sensitive and selective while being more resource conscious. Ultimately, the final hurdle for all such technologies is to be able to drive consumer adoption and achieve a meaningful medical outcome for the patient.


Subject(s)
Biosensing Techniques , Nanomedicine , Precision Medicine , Biomarkers/analysis , Humans , Nanostructures
2.
Langmuir ; 28(2): 1235-45, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22133105

ABSTRACT

Attaching functional molecules such as thiols and proteins to semiconductor surfaces is increasingly exploited in functional devices such as sensors. Despite extensive research to understand this interface and demonstrate a robust protocol for attachment, the bonding chemistry of thiolates to III-V surfaces has been under great debate in the literature. This study provides a comprehensive chemical model for the attachment of thiols to InAs, an increasingly device-relevant III-V semiconductor, using cysteamine as a model molecule. We examine the attachment of cysteamine to InAs via the thiol group using X-ray photoelectron spectroscopy and spectroscopic ellipsometry and confirm that thiolate bonding to the substrate occurs preferentially to As sites over In sites as a limit. These experiments explore the interplay of the native oxide chemical properties, the cysteamine concentration, and the evolving InAs surface chemistry with functionalization. The thiol-InAs interaction can be framed as a general acid-base reaction, where the nucleophilic and/or electrophilic attack of the surface (i.e., binding to In sites and/or As sites) depends on the acidity of the thiol. The roles of the initial oxide composition, the solvent of the functionalizing solution, and the cysteamine as a limiting reagent in fully displacing the oxide and creating In-S and As-S bonds are highlighted.

3.
Nano Lett ; 11(9): 3531-7, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21848270

ABSTRACT

Numerical analyses of the ultraviolet and visible plasmonic spectra measured from hemispherical gallium nanostructures on dielectric substrates reveal that resonance frequencies are quite sensitive to illumination angle and polarization in a way that depends on nanostructure size, shape, and substrate. Large, polarization-dependent splittings arise from the broken symmetry of hemispherical gallium nanoparticles on sapphire substrates, inducing strong interactions with the substrate that depend sensitively on the angle of illumination and the nanoparticle diameter.


Subject(s)
Gallium/chemistry , Nanotechnology/methods , Aluminum Oxide/chemistry , Materials Testing , Nanoparticles/chemistry , Particle Size , Ultraviolet Rays
5.
J Am Chem Soc ; 131(34): 12032-3, 2009 Sep 02.
Article in English | MEDLINE | ID: mdl-19655747

ABSTRACT

Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.


Subject(s)
Gallium/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Aluminum Oxide/chemistry , Surface Properties , Temperature
6.
Langmuir ; 25(2): 924-30, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19105600

ABSTRACT

Ga nanoparticles supported on large band gap semiconductors like SiC, GaN, and ZnO are interesting for plasmon-enhanced UV-emitting solid-state devices. We investigate the influence of the polarity of the SiC, GaN, and ZnO wurtzite semiconductors on the wetting of Ga nanoparticles and on the resulting surface plasmon resonance (SPR) by exploiting real time plasmonic ellipsometry. The interface potential between polar semiconductors (SiC, GaN, and ZnO) and plasmonic nanoparticles (gallium) is shown to influence nanoparticle formation dynamics, geometry, and consequently the SPR wavelength. We invoke the Lippman electrowetting framework to elucidate the mechanisms controlling nanoparticle dynamics and experimentally demonstrate that the charge transfer at the Ga nanoparticle/polar semiconductor interface is an intrinsic method for tailoring the nanoparticle plasmon resonance. Therefore, the present data demonstrate that for supported nanoparticles, surface and interface piezoelectric charge of polar semiconductors also affects SPR along with the well-known effect of the media refractive index.

SELECTION OF CITATIONS
SEARCH DETAIL
...