Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 10: 1206346, 2023.
Article in English | MEDLINE | ID: mdl-37592942

ABSTRACT

The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.

2.
J Adv Vet Anim Res ; 10(1): 103-112, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37155541

ABSTRACT

Objectives: This study aimed to pinpoint the universality of extracellular antimicrobial resistance elements (eAREs) and compare the contents of eAREs with those of intracellular AREs (iAREs) in animal feces, thus laying a foundation for the further analysis of the horizontal transfer of antimicrobial resistance genes (ARGs) in the animal guts. Materials and Methods: Extracellular DNAs were isolated from the fecal samples of Pavo cristatus (n = 18), Ursus thibetanus (n = 2), two breeds of broilers (n = 21 and 11, respectively), and from the contents of rabbit intestines (n = 5). eAREs were detected by PCR technology. iAREs in P. cristatus and broiler feces were also detected and compared with the corresponding eAREs. In addition, some gene cassettes of class 1 integrons were sequenced and analyzed. Results: The results showed that eAREs exist in animal feces and intestinal contents. In this study, different eAREs were detected from animal feces and intestinal contents, and tetA, tetB, sul1, sul2, class 1 integron, and IncFIB presented the highest detection rates. The detection rates of certain eAREs were significantly higher than those of parallel iAREs. The integral cassettes with intact structures were found in eAREs, and the cassettes carried ARGs. Conclusions: The presented study here sheds light on the presence of eAREs in animal feces or guts, and eAREs may play an important role in the horizontal gene transfer of ARGs.

3.
PeerJ ; 10: e14444, 2022.
Article in English | MEDLINE | ID: mdl-36518262

ABSTRACT

Background: Yak cows produce higher quality milk with higher concentrations of milk fat than dairy cows. Recently, studies have found the yak milk yield and milk fat percentage have decreased significantly over the past decade, highlighting the urgency for yak milk improvement. Therefore, we aimed to analyze how the gut microbiome impacts milk fat synthesis in Zhongdian yak cows. Methods: We collected milk samples from Zhongdian yak cows and analyzed the milk fat percentage, selecting five Zhongdian yak cows with a very high milk fat percentage (>7%, 8.70 ± 1.89%, H group) and five Zhongdian yak cows with a very low milk fat percentage (<5%, 4.12 ± 0.43%, L group), and then obtained gut samples of these ten Zhongdian yak cows through rectal palpation. Gut metagenomics, metabolomics, and conjoint metagenomics and metabolomics analyses were performed on these samples, identifying taxonomic changes, functional changes, and changes in gut microbes-metabolite interactions within the milk fat synthesis-associated Zhongdian yak cows gut microbiome, to identify potential regulatory mechanisms of milk fat at the gut microbiome level in Zhongdian yak cows. Results: The metagenomics analysis revealed Firmicutes and Proteobacteria were significantly more abundant in the gut of the high-milk fat Zhongdian yak cows. These bacteria are involved in the biosynthesis of unsaturated fatty acids and amino acids, leading to greater efficiency in converting energy to milk fat. The metabolomics analysis showed that the elevated gut metabolites in high milk fat percentage Zhongdian yak cows were mainly enriched in lipid and amino acid metabolism. Using a combined metagenomic and metabolomics analysis, positive correlations between Firmicutes (Desulfocucumis, Anaerotignum, Dolosiccus) and myristic acid, and Proteobacteria (Catenovulum, Comamonas, Rubrivivax, Marivita, Succinimouas) and choline were found in the gut of Zhongdian yak cows. These interactions may be the main contributors to methanogen inhibition, producing less methane leading to higher-efficient milk fat production. Conclusions: A study of the gut microbe, gut metabolites, and milk fat percentage of Zhongdian yak cows revealed that the variations in milk fat percentage between yak cows may be caused by the gut microbes and their metabolites, especially Firmicutes-myristic acid and Proteobacteria-choline interactions, which are important to milk fat synthesis. Our study provides new insights into the functional roles of the gut microbiome in producing small molecule metabolites and contributing to milk performance traits in yak cows.


Subject(s)
Gastrointestinal Microbiome , Milk , Animals , Female , Cattle , Milk/chemistry , Multiomics , Metabolomics , Firmicutes , Myristic Acids/analysis
5.
Front Genet ; 12: 728418, 2021.
Article in English | MEDLINE | ID: mdl-34777464

ABSTRACT

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.

6.
Int J Nanomedicine ; 16: 3775-3788, 2021.
Article in English | MEDLINE | ID: mdl-34113100

ABSTRACT

PURPOSE: A liposome-coated arsenic-manganese complex, denoted as LP@MnAsx was constructed for the targeted delivery of arsenic trioxide (ATO) against carcinoma. METHODS: Arsenite, the prodrug of ATO, was encapsulated within a liposome via electrostatic interaction with the manganese ions. The as-prepared material was characterized with dynamic light scattering and transmission electron microscopy. The entrapment efficiency and drug loading of arsenic in the carrier were measured using inductively coupled plasma spectrometry. The in vitro release of arsenic was evaluated by using the dialysis bag method. Furthermore, the Fenton-like activity and in vitro cytodynamics research of LP@MnAsx were monitored in this work. And the cellular uptake study was used to investigate the in vitro entry mechanism. Furthermore, the cytotoxicity, cell apoptosis and cell cycle study were performed to evaluate the tumor-killing efficiency. Also, the pharmacokinetic and antitumor studies were investigated in HepG2 tumor-bearing nude mice. RESULTS: The as-prepared LP@MnAsx possessed a spherical morphology, uniformly distributed hydrodynamic diameter, and excellent drug-loading efficiency. LP@MnAsx displayed robust stability and sustained-release profile under physiological environments. LP@MnAsx could degrade with high sensitivity to the pH variation in the tumor microenvironment. As such, this could lead to a burst release profile of Mn2+ and arsenite to achieve a synergistic therapy of chemodynamic therapy and chemotherapy. When compared to the carrier-free arsenate, in vitro experiments revealed that LP@MnAsx exhibited enhanced cellular uptake and tumor-killing efficiency. LP@MnAsx also demonstrated significantly enhanced tumor-specific in vivo distribution of arsenic, prolonged systemic circulation lifetime, and increased accumulation at the tumor site. CONCLUSION: Based on the experimental results, LP@MnAsx is an ideal arsenic-based nanodelivery system, whereby it can improve the non-specific distribution of NaAsO2 in vivo. Thus, this work can expand the research and application of arsenic trioxide against solid tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenic/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liposomes/administration & dosage , Liver Neoplasms/drug therapy , Magnetic Resonance Imaging/methods , Manganese/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis , Arsenic/chemistry , Carcinoma, Hepatocellular/pathology , Cell Cycle , Drug Delivery Systems/methods , Drug Synergism , Hep G2 Cells , Humans , Liposomes/chemistry , Liver Neoplasms/pathology , Male , Manganese/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
7.
Mitochondrial DNA ; 24(1): 6-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22931686

ABSTRACT

The mitochondrial genome of Bactrocera cucurbitae, a representative of the Tephritid family, was completely sequenced for the first time. The B. cucurbitae genome is a double-stranded circular molecule of 15,825 bp long, including the entire set of the 37 genes. The 72.9% A+T content and 0.047 AT-skew are within the range of the known dipteran genomes. Comparative analyses showed that dipteran mitochondrial protein-coding genes present complex evolutionary patterns. Some of the codon families were strongly biased towards J-strand. The mitochondrial ATP8 of B. cucurbitae exhibited a faster substitution rate than other genes. Cox1 is the slowest evolving protein and could be considered as a potential phylogenetic marker.


Subject(s)
Cucurbitaceae/parasitology , Genome, Mitochondrial , Tephritidae/genetics , Animals , Codon , DNA, Mitochondrial/genetics , Gene Order , Insect Proteins/genetics , Phylogeny , Sequence Analysis, DNA , Species Specificity , Tephritidae/classification
8.
J Bone Miner Metab ; 26(4): 328-34, 2008.
Article in English | MEDLINE | ID: mdl-18600398

ABSTRACT

The cellular and molecular pathways of fluoride toxicity in osteoblasts are not very well understood. Therefore, the objective of the present study was to evaluate the effects of sodium fluoride (NaF) on caprine osteoblasts cultured in vitro. Caprine osteoblasts at 2.0 x 10(-4) cells/ml were incubated in vitro with NaF at 0, 10(-8), 10(-7), 10(-6), 10(-5), 10(-4), 5.0 x 10(-4), and 10(-3) M, and then proliferation, differentiation, apoptosis, calcification, and alkaline phosphatase activity were examined. Also, the effect of NaF on osteoblastic cell viability and the molecular events leading to apoptosis were determined. Electron microscopy revealed cytoplasmic and nuclear alterations in the ultrastructure of osteoblasts exposed to various NaF concentrations. A cell-based quantitative evaluation of the MTT assay showed that NaF at concentrations of 10(-8) to 10(-5) M promoted cell proliferation, whereas at 10(-4) to 10(-3) M it suppressed cell proliferation and induced apoptosis. Alkaline phosphatase (ALP) activity and mineralization ability increased in cells treated at 10(-8) to 10(-5) M with sodium versus the controls, but decreased at 5.0 x 10(-4) to 10(-3) M dosage. The highest incidence of early apoptotic cells and late apoptotic cells was reached (3.33% and 2.92%, respectively) under NaF concentration of 10(-4) M. In conclusion, results of this study indicated that NaF modulates osteoblast proliferation and differentiation in a dose-dependent manner and modified osteoblast metabolism bidirectionally, suggesting NaF may play a significant role in osteoblast physiology.


Subject(s)
Cell Differentiation/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Sodium Fluoride/pharmacology , Alkaline Phosphatase/metabolism , Animals , Apoptosis/drug effects , Calcification, Physiologic/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Goats , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Osteoblasts/enzymology , Osteoblasts/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...