Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824128

ABSTRACT

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Subject(s)
Axoneme , Introns , Protozoan Proteins , RNA Splicing , RNA-Binding Proteins , Introns/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Male , Axoneme/metabolism , Female , Gametogenesis/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Malaria/parasitology , Plasmodium/genetics , Plasmodium/metabolism
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(6): 555-562, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34130775

ABSTRACT

OBJECTIVE: To investigate the incidence rate and risk factors for metabolic bone disease of prematurity (MBDP) in very low birth weight/extremely low birth weight (VLBW/ELBW) infants. METHODS: The medical data of 61 786 neonates from multiple centers of China between September 1, 2013 and August 31, 2016 were retrospectively investigated, including 504 VLBW/ELBW preterm infants who met the inclusion criteria. Among the 504 infants, 108 infants diagnosed with MBDP were enrolled as the MBDP group and the remaining 396 infants were enrolled as the non-MBDP group. The two groups were compared in terms of general information of mothers and preterm infants, major diseases during hospitalization, nutritional support strategies, and other treatment conditions. The multivariate logistic regression analysis was used to investigate the risk factors for MBDP. RESULTS: The incidence rate of MBDP was 19.4% (88/452) in VLBW preterm infants and 38.5% (20/52) in ELBW preterm infants. The incidence rate of MBDP was 21.7% in preterm infants with a gestational age of < 32 weeks and 45.5% in those with a gestational age of < 28 weeks. The univariate analysis showed that compared with the non-MBDP group, the MBDP group had significantly lower gestational age and birth weight, a significantly longer length of hospital stay, and a significantly higher incidence rate of extrauterine growth retardation (P < 0.05). Compared with the non-MBDP group, the MBDP group had significantly higher incidence rates of neonatal sepsis, anemia, hypocalcemia, and retinopathy of prematurity (P < 0.05). The MBDP group had a significantly lower mean feeding speed, a significantly higher age when reaching total enteral feeding, and a significantly longer duration of parenteral nutrition (P < 0.05). The use rate of caffeine citrate in the MBDP group was significantly higher, but the use rate of erythropoietin was significantly lower than that in the non-MBDP group (P < 0.05). The multivariate logistic regression analysis showed that gestational age < 32 weeks, hypocalcemia, extrauterine growth retardation at discharge, and neonatal sepsis were risk factors for MBDP (P < 0.05). CONCLUSIONS: A lower gestational age, hypocalcemia, extrauterine growth retardation at discharge, and neonatal sepsis may be associated an increased risk of MBDP in VLBW/ELBW preterm infants. It is necessary to strengthen perinatal healthcare, avoid premature delivery, improve the awareness of the prevention and treatment of MBDP among neonatal pediatricians, and adopt positive and reasonable nutrition strategies and comprehensive management measures for preterm infants.


Subject(s)
Bone Diseases, Metabolic , Infant, Extremely Low Birth Weight , Birth Weight , Bone Diseases, Metabolic/epidemiology , Bone Diseases, Metabolic/etiology , China/epidemiology , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Pregnancy , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...