Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.066
Filter
1.
FASEB J ; 38(11): e23721, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822662

ABSTRACT

Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Schistosoma japonicum , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology , Mice , Schistosoma japonicum/immunology , Dextran Sulfate/toxicity , Female , Immunization/methods , Ovum , Mice, Inbred C57BL
2.
Transl Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823438

ABSTRACT

OBJECTIVES: To unravel the heterogeneity and function of microenvironmental neutrophils during intervertebral disc degeneration (IDD). METHODS: Single-cell RNA sequencing (scRNA-seq) was utilized to dissect the cellular landscape of neutrophils in intervertebral disc (IVD) tissues and their crosstalk with nucleus pulposus cells (NPCs). The expression levels of macrophage migration inhibitory factor (MIF) and ACKR3 in IVD tissues were detected. The MIF/ACKR3 axis was identified and its effects on IDD were investigated in vitro and in vivo. RESULTS: We sequenced here 71520 single cells from 5 control and 9 degenerated IVD samples using scRNA-seq. We identified a unique cluster of neutrophils abundant in degenerated IVD tissues that highly expressed MIF and was functionally enriched in extracellular matrix organization (ECMO). Cell-to-cell communication analyses showed that this ECMO-neutrophil subpopulation was closely interacted with an effector NPCs subtype, which displayed high expression of ACKR3. Further analyses revealed that MIF was positively correlated with ACKR3 and functioned via directly binding to ACKR3 on effector NPCs. MIF inhibition attenuated degenerative changes of NPCs and extracellular matrix, which could be partially reversed by ACKR3 overexpression. Clinically, a significant correlation of high MIF/ACKR3 expression with advanced IDD grade was observed. Furthermore, we also found a positive association between MIF+ ECMO-neutrophil counts and ACKR3+ effector NPCs density as well as higher expression of the MIF/ACKR3 signaling in areas where these two cell types were neighbors. CONCLUSIONS: These data suggest that ECMO-neutrophil promotes IDD progression by their communication with NPCs via the MIF/ACKR3 axis, which may shed light on therapeutic strategies.

3.
Sci Total Environ ; : 173674, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823701

ABSTRACT

This paper investigated the operational characteristics and self-regulation mechanism of the partial denitrification/anammox (PD/A) granular system under the stress of oxytetracycline (OTC), an emerging pollutant that accumulates in municipal wastewater treatment plants through various pathways, posing significant challenges for its future promotion in engineering applications. The results indicated that OTC concentrations below 100 mg/L intensified its short-term inhibition on the PD/A granular sludge system, decreasing functional bacterial activity, while between 150 and 300 mg/L, PD's NO3--N to NO2--N conversion ability diminished, and Anammox activity was significantly suppressed. Under long-term high OTC stress (20-30 mg/L), nitrogen removal suffered, and batch tests revealed significant inhibition of PD's NO3--N to NO2--N conversion, dropping from 73.77 % to 50.17 %. Anammox bacteria activity sharply declined from 1.81 to 0.39 mg N/gVSS/h under OTC stress. Extracellular polymeric substances (EPS) content rose from 185.39 to 210.86 mg/gVSS, indicating PD/A sludge's self-protection mechanism. However, EPS content fell due to cell lysis at high OTC (30 mg/L). The decreasing relative abundance of Candidatus_Brocadia (2.32 % to 0.93 %) and Thaure (12.63 % to 7.82 %) was a key factor in the gradual deterioration of denitrification performance. This study was expected to provide guidance for the PD/A process to cope with the interference of antibiotics and other emerging pollutants (short-term shock and long-term stress).

4.
ACS Sens ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828988

ABSTRACT

The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.

5.
Sci Data ; 11(1): 571, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834588

ABSTRACT

Chip is a visual representation of rock breaking by cutter, and their related parameters are crucial for revealing the rock breaking mechanism in deep-sea mining. Based on sieving and three-dimensional size measurement methods widely used in mining engineering, this paper reports a dataset of chip parameters for rock breaking by chisel pick under deep-sea hydrostatic pressure. Specifically, we first designed an experimental setup that can accurately simulate deep-sea hydrostatic pressure, conducted rock breaking experiments and carefully collected chips. Subsequently, those chips were sieved, high-resolution images were collected, and the coarseness index (CI), chip size uniformity (n), absolute chip size (de), and fractal dimension (D) were measured. Finally, three-dimensional size (long, intermediate and short) was measured for 3064 chips with particle sizes greater than 4.75 mm. This dataset will be used by researchers to validate numerical simulations or optimize equipment structures related to deep-sea mining, including deep-sea rock mechanics, mining cutter and conveyor pipes.

6.
One Health ; 18: 100752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832078

ABSTRACT

Background: As the antimicrobial resistance (AMR) problem accelerates, humans and animals are suffering from the consequences of infections with diminishing antimicrobial treatment options. Within the One Medicine and One Health mandate, which denotes a collaborative, multisectoral, and transdisciplinary approach to improve medicine and health across human and animal sectors, we investigate how human and veterinary medical practitioners apply their medical and policy knowledge in prescribing antimicrobials. Different regions and locations establish different intermediary policies and programs to support clinicians in that pursuit. In Hong Kong, there are locally adapted programs at governance and clinical levels in the human medical field. However, there is no locally adapted veterinary antibiotic prescription guideline or stewardship program, and veterinarians adopt overseas or international professions' antimicrobial use guidelines. Such a policy environment creates a natural experiment to compare local policy implementation conditions and clinicians' knowledge, perception, and practice. Method: We construct the investigative survey tool by adaptation of Knowledge, Attitude, and Practice (KAP) and Capacity, Opportunity, and Motivation-Behavior (COM-B) models. We identify, compare and contrast factors that influence clinicians' antimicrobial prescription behavior. The factors are considered both intrinsically, such as personal attributes, and extrinsically, such as societal and professional norms. Findings: The absence of locally adopted antimicrobial guidelines influences AMR stewardship program implementation in local Hong Kong veterinary community. As medical allies, physicians and veterinarians share similar demographic influence, organization considerations and perception of public awareness. Both cohorts prescribe more prudently with more years-in-practice, time available to communicate with patients or caretakers, and public awareness and support.

7.
Mater Horiz ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690683

ABSTRACT

Understanding the molecular mechanism by which the periodontal ligament (PDL) is maintained uncalcified between two mineralized tissues (cementum and bone) may facilitate the functional repair and regeneration of the periodontium complex, disrupted in the context of periodontal diseases. However, research that explores the control of type I collagen (COL I) mineralization fails to clarify the detailed mechanism of regulating spatial collagen mineralization, especially in the periodontium complex. In the present study, decorin (DCN), which is characterized as abundant in the PDL region and rare in mineralized tissues, was hypothesized to be a key regulator in the spatial control of collagen mineralization. The circular dichroism results confirmed that DCN regulated the secondary structure of COL I, and the surface plasmon resonance results indicated that COL I possessed a higher affinity for DCN than for other mineralization promoters, such as DMP-1, OPN, BSP and DSPP. These features of DCN may contribute to blocking intrafibrillar mineralization in COL I fibrils during the polymer-induced liquid-precursor mineralization process when the fibrils are cross-linked with DCN. This effect was more remarkable when the fibrils were phosphorylated by sodium trimetaphosphate, as shown by the observation of a tube-like morphology via TEM and mineral sheath via SEM. This study enhances the understanding of the role of DCN in mineralization regulation among periodontal tissues. This provides insights for the development of biomaterials for the regeneration of interfaces between soft and hard tissues.

8.
J Am Chem Soc ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812275

ABSTRACT

Zeolite nanosheets with an extremely thin thickness featuring both unique pore systems and low diffusion resistance have the potential to achieve enhanced catalytic performance in the conversion of bulky molecular biomass. The preparation of unit-cell level nanosheets generally requires complex and costly multifunctional surfactants or an organic structure-directing agent (OSDA). Commercially available and environmentally friendly ionic liquids can also direct the structure of zeolite nanosheets by π-π stacking when these kinds of OSDA are used in large amount. Herein, we first report unit-cell-sized silicogermanate nanosheets of NS-IM-20 (UWY topology), 5 nm in thickness, which were synthesized at a relatively low ionic liquid concentration with the assistance of halide ion (Cl-). The Pd-loaded NS-IM-20 nanosheets with a hierarchical porosity and moderate acidity act as promising bifunctional catalysts for selective biomass conversion.

10.
Nat Biomed Eng ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693431

ABSTRACT

Bispecific T-cell engagers (BiTEs) bring together tumour cells and cytotoxic T cells by binding to specific cell-surface tumour antigens and T-cell receptors, and have been clinically successful for the treatment of B-cell malignancies. Here we show that a BiTE-sialidase fusion protein enhances the susceptibility of solid tumours to BiTE-mediated cytolysis of tumour cells via targeted desialylation-that is, the removal of terminal sialic acid residues on glycans-at the BiTE-induced T-cell-tumour-cell interface. In xenograft and syngeneic mouse models of leukaemia and of melanoma and breast cancer, and compared with the parental BiTE molecules, targeted desialylation via the BiTE-sialidase fusion proteins enhanced the formation of immunological synapses, T-cell activation and T-cell-mediated tumour-cell cytolysis in the presence of the target antigen. The targeted desialylation of tumour cells may enhance the potency of therapies relying on T-cell engagers.

11.
J Pineal Res ; 76(4): e12960, 2024 May.
Article in English | MEDLINE | ID: mdl-38747028

ABSTRACT

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Subject(s)
Antifungal Agents , Melatonin , Melatonin/pharmacology , Melatonin/chemistry , Melatonin/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis
12.
Cell Death Discov ; 10(1): 234, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750055

ABSTRACT

Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.

13.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804947

ABSTRACT

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

14.
Open Forum Infect Dis ; 11(5): ofae238, 2024 May.
Article in English | MEDLINE | ID: mdl-38770210

ABSTRACT

Varied seasonal patterns of respiratory syncytial virus (RSV) have been reported worldwide. We conducted a systematic review on articles identified in PubMed reporting RSV seasonality based on data collected before 1 January 2020. RSV seasonal patterns were examined by geographic location, calendar month, analytic method, and meteorological factors including temperature and absolute humidity. Correlation and regression analyses were conducted to explore the relationship between RSV seasonality and study methods and characteristics of study locations. RSV seasons were reported in 209 articles published in 1973-2023 for 317 locations in 77 countries. Regular RSV seasons were similarly reported in countries in temperate regions, with highly variable seasons identified in subtropical and tropical countries. Longer durations of RSV seasons were associated with a higher daily average mean temperature and daily average mean absolute humidity. The global seasonal patterns of RSV provided important information for optimizing interventions against RSV infection.

15.
Front Nutr ; 11: 1379096, 2024.
Article in English | MEDLINE | ID: mdl-38765818

ABSTRACT

Background: The yearly escalation in hypertension prevalence signifies a noteworthy public health challenge. Adhering to a nutritious diet is crucial for enhancing the quality of life among individuals managing hypertension. However, the relationship between vitamin C and hypertension, as well as homocysteine, remains unclear. Objective: The primary aim of this investigation was to scrutinize the potential mediating role of Vitamin C in the association between homocysteine levels and blood pressure, utilizing data extracted from the National Health and Nutrition Examination Survey (NHANES) database. Methods: A total of 7,327 participants from the NHANES 2003-2006 were enrolled in this cross-sectional survey. The main information was obtained using homocysteine, Vitamin C, systolic blood pressure (SBP) and diastolic blood pressure (DBP). Correlation analysis was used to assess the correlation between homocysteine, SBP, DBP and vitamin C. Linear regression analysis was utilized to determine the ß value (ß) along with its 95% confidence intervals (CIs). Mediation analysis was performed to investigate whether the relationship between homocysteine and blood pressure was mediated by Vitamin C, and to quantify the extent to which Vitamin C contributed to this association. Results: The results manifested that the homocysteine was positively associated with SBP (r = 0.24, p < 0.001) and DBP (r = 0.03, p < 0.05), while negatively correlated with Vitamin C (r = -0.008, p < 0.001). Vitamin C was found to be negatively associated with SBP (r = -0.03, p < 0.05) and DBP (r = 0.11, p < 0.001). Mediation effect analysis revealed that a partial mediation (indirect effect: 0.0247[0.0108-0.0455], p < 0.001) role accounting for 11.5% of total effect, among homocysteine and SBP. However, the mediating effect of Vitamin C between homocysteine and DBP was not statistically significant. Conclusion: Hypertension patients should pay attention to homocysteine and Vitamin C level. What is more, hypertension patients ought to formulate interventions for Vitamin C supplementation as well as homocysteine reduce strategies to lower blood pressure.

16.
Sci Adv ; 10(21): eado1755, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787946

ABSTRACT

State-of-the-art technology for cyclohexanone oxime production typically demands elevated temperature and pressure, along with the utilization of expensive hydroxylamine sulfate or oxidants. Here, we propose an electrochemistry-assisted cascade strategy for the efficient cyclohexanone ammoximation under ambient conditions by using in situ cathode-generated green oxidants of reactive oxygen species (ROS) such as OOH* and H2O2. This electrochemical reaction can take place at the cathode, achieving over 95% yield, 99% selectivity of cyclohexanone oxime, and an electron-to-oxime (ETO) efficiency of 96%. Mechanistic analysis reveals that, in addition to the direct ammoximation by in situ-generated OOH* by electrocatalytic ORR, Ti-MOR also play a major role in capturing OOH* directly and converting the in situ-generated H2O2 to OOH*, thus accelerating the ORR-coupled cascade production of cyclohexanone oxime. This work paves a mild, economical, and sustainable energy-efficient electrocatalytic route for the oxime production using oxygen, ammonium bicarbonate, and cyclohexanone.

18.
Article in English | MEDLINE | ID: mdl-38822142

ABSTRACT

Secondary flow path is one of the crucial aspects during the design of centrifugal blood pumps. Small clearance size increases stress level and blood damage, while large clearance size can improve blood washout and reduce stress level. Nonetheless, large clearance also leads to strong secondary flows, causing further blood damage. Maglev blood pumps rely on magnetic force to achieve rotor suspension and allow more design freedom of clearance size. This study aims to characterize turbulent flow field and secondary flow as well as its effects on the primary flow and pump performance, in two representative commercial maglev blood pumps of CH-VAD and HeartMate III, which feature distinct designs of secondary flow path. The narrow and long secondary flow path of CH-VAD resulted in low secondary flow rates and low disturbance to the primary flow. The flow loss and blood damage potential of the CH-VAD mainly occurred at the secondary flow path, as well as the blade clearances. By contrast, the wide clearances in HeartMate III induced significant disturbance to the primary flow, resulting in large incidence angle, strong secondary flows and high flow loss. At higher flow rates, the incidence angle was even larger, causing larger separation, leading to a significant decrease of efficiency and steeper performance curve compared with CH-VAD. This study shows that maglev bearings do not guarantee good blood compatibility, and more attention should be paid to the influence of secondary flows on pump performance when designing centrifugal blood pumps.

19.
Article in English | MEDLINE | ID: mdl-38817046

ABSTRACT

OBJECTIVE: To determine the effectiveness of nirmatrelvir/ritonavir and molnupiravir among vaccinated and unvaccinated non-hospitalized adults with COVID-19. METHODS: Observational studies of nirmatrelvir/ritonavir or molnupiravir compared to no antiviral drug treatment for COVID-19 in non-hospitalized adults with data on vaccination status were included. We searched MEDLINE, EMBASE, Scopus, Web of Science, WHO COVID-19 Research Database and medRxiv for reports published between 1 January 2022 and 8 November 2023. The primary outcome was a composite of hospitalization or mortality up to 35 days after COVID-19 diagnosis. Risk of bias was assessed with ROBINS-I. Risk ratios (RR), hazard ratios (HR) and risk differences (RD) were separately estimated using random-effects models. RESULTS: We included 30 cohort studies on adults treated with nirmatrelvir/ritonavir (n = 462 279) and molnupiravir (n = 48 008). Nirmatrelvir/ritonavir probably reduced the composite outcome (RR 0.62, 95%CI 0.55-0.70; I2 = 0%; moderate certainty) with no evidence of effect modification by vaccination status (RR Psubgroup = 0.47). In five studies, RD estimates against the composite outcome for nirmatrelvir/ritonavir were 1.21% (95%CI 0.57% to 1.84%) in vaccinated and 1.72% (95%CI 0.59% to 2.85%) in unvaccinated subgroups.Molnupiravir may slightly reduce the composite outcome (RR 0.75, 95%CI 0.67-0.85; I2 = 32%; low certainty). Evidence of effect modification by vaccination status was inconsistent among studies reporting different effect measures (RR Psubgroup = 0.78; HR Psubgroup = 0.08). In two studies, RD against the composite outcome for molnupiravir were -0.01% (95%CI -1.13% to 1.10%) in vaccinated and 1.73% (95%CI -2.08% to 5.53%) in unvaccinated subgroups. CONCLUSIONS: Among cohort studies of non-hospitalized adults with COVID-19, nirmatrelvir/ritonavir is effective against the composite outcome of severe COVID-19 independent of vaccination status. Further research and a reassessment of molnupiravir use among vaccinated adults are warranted. REGISTRATION: PROSPERO CRD42023429232.

20.
Blood Sci ; 6(2): e00187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38721470

ABSTRACT

Hematopoietic stem cells (HSCs) have been considered to progressively lose their self-renewal and differentiation potentials prior to the commitment to each blood lineage. However, recent studies have suggested that megakaryocyte progenitors (MkPs) are generated at the level of HSCs. In this study, we newly identified early megakaryocyte lineage-committed progenitors (MgPs) mainly in CD201-CD48- cells and CD48+ cells separated from the CD150+CD34-Kit+Sca-1+Lin- HSC population of the bone marrow in adult mice. Single-cell colony assay and single-cell transplantation showed that MgPs, unlike platelet-biased HSCs, had little repopulating potential in vivo, but formed larger megakaryocyte colonies in vitro (on average 8 megakaryocytes per colony) than did previously reported MkPs. Single-cell RNA sequencing supported that HSCs give rise to MkPs through MgPs along a Mk differentiation pathway. Single-cell reverse transcription polymerase chain reaction (RT-PCR) analysis showed that MgPs expressed Mk-related genes, but were transcriptionally heterogenous. Clonal culture of HSCs suggested that MgPs are not direct progeny of HSCs. We propose a differentiation model in which HSCs give rise to MgPs which then give rise to MkPs, supporting a classic model in which Mk-lineage commitment takes place at a late stage of differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...