Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anim Nutr ; 15: 332-340, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053804

ABSTRACT

This study aimed to investigate the feeding effect of wheat silage on growth performance, nutrient digestibility, rumen fermentation, and microbiota composition in feedlot lambs. Sixty-four male crossbred Chinese Han lambs (BW = 27.8 ± 0.67 kg, 3 months of age) were randomly assigned to four ration groups with wheat silage replacing 0% (WS0), 36% (WS36), 64% (WS64), and 100% (WS100) of oaten hay on forage dry matter basis. The concentrate-to-forage ratio was 80:20 and the feeding trial lasted 52 d. Increasing wheat silage inclusion linearly decreased dry matter intake by 4% to 27% (P < 0.01). However, increasing the wheat silage replacement of oaten hay by no more than 64% improved the feed efficiency by 14% as noted by the feed-to-gain ratio (P = 0.04). Apparent digestibility of organic matter (P < 0.01), neutral detergent fibre (P = 0.04) and acid detergent fibre (P < 0.01) quadratically increased. Ammonia nitrogen (P = 0.01) decreased while microbial protein production (P < 0.01) increased with the increase of wheat silage inclusion. Total volatile fatty acids concentration increased quadratically with the increase of wheat silage inclusion (P < 0.01), and the highest occurred in WS64. The molar proportion of acetate (P < 0.01) and acetate-to-propionate ratio (P = 0.04) decreased while butyrate (P < 0.01) and isovalerate (P = 0.04) increased. Increasing wheat silage inclusion increased the Firmicutes-to-Bacteroidota ratio by 226% to 357%, resulting in Firmicutes instead of Bacteroidota being the most abundant phylum. The relative abundance of cellulolytic Ruminococcus numerically increased but that of amylolytic Prevotella (P < 0.01) decreased as increasing wheat silage inclusion. Taken together, increasing wheat silage replacement of oaten hay by no more than 64% exhibited greater feed efficiency and fibre digestion despite low feed intake by feedlot lambs due to the change of Firmicutes-to-Bacteroidota ratio in the rumen.

2.
Foods ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36766172

ABSTRACT

The aim of this study was to investigate whether guanidine acetic acid (GAA) yields a response in rapid-growing lambs depending on forage type. In this study, seventy-two small-tailed Han lambs (initial body weights = 12 ± 1.6 kg) were used in a 120-d feeding experiment after a 7-d adaptation period. A 2 × 3 factorial experimental feeding design was applied to the lambs, which were fed a total mixed ration with two forage types (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three forms of additional GAA (GAA: 0 g/kg; UGAA: Uncoated GAA, 1 g/kg; CGAA: Coated GAA, 1 g/kg). The OH diet had a greater dry matter intake, average daily gain, and hot carcass weight than the OHWS diet. The GAA supplementation increased the final body weight, hot carcass weight, dressing percentage, and ribeye area in the longissimus lumborum. Meanwhile, it decreased backfat thickness and serum triglycerides. Dietary GAA decreased the acidity of the meat and elevated the water-holding capacity in mutton. In addition, the crude protein content in mutton increased with GAA addition. Dietary GAA (UGAA or CGAA) might be an effective additive in lamb fed by different forage types, as it has potential to improve growth performance and meat quality.

3.
Microorganisms ; 10(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422339

ABSTRACT

In plant cell wall, ferulic acid (FA) and p-coumaric acid (pCA) are commonly linked with arabinoxylans and lignin through ester and ether bonds. These linkages were deemed to hinder the access of rumen microbes to cell wall polysaccharides. The attachment of rumen microbes to plant cell wall was believed to have profound effects on the rate and the extent of forage digestion in rumen. The objective of this study was to evaluate the effect of bound phenolic acid content and their composition in corn silages on the nutrient degradability, and the composition of the attached bacteria. Following an in situ rumen degradation method, eight representative corn silages with different FA and pCA contents were placed into nylon bags and incubated in the rumens of three matured lactating Holstein cows for 0, 6, 12, 24, 36, 48, and 72 h, respectively. Corn silage digestibility was assessed by in situ degradation methods. As a result, the effective degradability of dry matter, neutral detergent fibre, and acid detergent fibre were negatively related to the ether-linked FA and pCA, and their ratio in corn silages, suggesting that not only the content and but also the composition of phenolic acids significantly affected the degradation characteristics of corn silages. After 24 h rumen fermentation, Firmicutes, Actinobacteria, and Bacteroidota were observed as the dominant phyla in the bacterial communities attached to the corn silages. After 72 h rumen fermentation, the rumen degradation of ester-linked FA was much greater than that of ester-linked pCA. The correlation analysis noted that Erysipelotrichaceae_UCG-002, Olsenella, Ruminococcus_gauvreauii_group, Acetitomaculum, and Bifidobacterium were negatively related to the initial ether-linked FA content while Prevotella was positively related to the ether-linked FA content and the ratio of pCA to FA. In summary, the present results suggested that the content of ether-linked phenolic acids in plant cell walls exhibited a more profound effect on the pattern of microbial colonization than the fibre content.

4.
Front Vet Sci ; 9: 954675, 2022.
Article in English | MEDLINE | ID: mdl-35990281

ABSTRACT

Guanidine acetic acid (GAA) is increasingly considered as a nutritional growth promoter in monogastric animals. Whether or not such response would exist in rapid-growing lambs is unclear yet. The objective of this study was to investigate whether dietary supplementation with uncoated GAA (UGAA) and coated GAA (CGAA) could alter growth performance, nutrient digestion, serum metabolites, and antioxidant capacity in lambs. Seventy-two small-tailed Han lambs initially weighed 12 ± 1.6 kg were randomly allocated into six groups in a 2 × 3 factorial experimental design including two forage-type rations [Oaten hay (OH) vs. its combination with wheat silage (OHWS)] and three GAA treatment per ration: no GAA, 1 g UGAA, and 1 g CGAA per kg dry matter. The whole experiment was completed in two consecutive growing stages (stage 1, 13-30 kg; stage 2, 30-50 kg). Under high-concentrate feeding pattern (Stage 1, 25: 75; Stage 2, 20: 80), UGAA or CGAA supplementation in young lambs presented greater dry matter intake (DMI) in stage 1 and average daily gain (ADG) in the whole experimental period; lambs in OH group had higher ADG and DMI than that in OHWS group in stage 1 and whole experimental period, but this phenomenon was not observed in stage 2. Both UCGA and CGAA addition increased dietary DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestion in both stages. In blood metabolism, UCGA and CGAA addition resulted in a greater total protein (TP) and insulin-like growth factor 1(IGF-1) levels, as well as antioxidant capacity; at the same time, UCGA and CGAA addition increased GAA metabolism-creatine kinase and decreased guanidinoacetate N-methyltransferase (GAMT) and L-Arginine glycine amidine transferase catalyzes (AGAT) activity. In a brief, the results obtained in the present study suggested that GAA (UGAA and CGAA; 1 g/kg DM) could be applied to improve growth performance in younger (13-30 kg) instead of older (30-50 kg) lambs in high-concentrate feedlotting practice.

5.
Microorganisms ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35744623

ABSTRACT

Cysteamine (CS) is an essential nutritional regulator that improves the productive performance of animals by regulating somatotropic hormone secretion. To investigate the fattening potential and effects of CS on rumen microbial fermentation, 48 feedlot lambs were randomly assigned to four groups and fed diets supplemented with different CS concentrations (0, 20, 40, and 60 mg/kg BW). An increase in dietary CS concentrations linearly increased the average daily gain (ADG) and dry matter intake (p < 0.05) but decreased the feed-to-gain ratio (p < 0.01). For the serum hormone, increasing the dietary CS concentration linearly decreased somatostatin and leptin concentration (p < 0.01) but linearly increased the concentration of growth hormone and insulin-like growth factor 1 (p < 0.01). Regarding rumen fermentation, ruminal pH, ammonia-N, and butyrate content did not differ among the four treatments, although dietary CS supplementation linearly increased microbial protein and propionate and decreased the amount of acetate (p < 0.05). Furthermore, an increase in dietary CS concentrations quadratically decreased the estimated methane production and methane production per kg ADG (p < 0.05). High-throughput sequencing revealed that increased dietary CS concentrations quadratically increased Prevotella (p < 0.05), and Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance and rumen fermentation in a Spearman correlation analysis (r > 0.55, p < 0.05). Overall, a CS concentration higher than 20 mg/kg BW produced growth-promoting effects by inhibiting somatostatin concentrations and shifting the rumen toward glucogenic propionate fermentation by enriching Prevotella. In addition, Prevotella and norank_f__norank_o__Clostridia_UCG-014 were positively correlated with growth performance in lambs.

6.
Anim Nutr ; 9: 335-344, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35600541

ABSTRACT

Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids in the plant world, especially in the cell wall of grain bran, in comparison with forage and crop residues. Previous studies noted that FA was mainly linked with arabinoxylans and lignin in plant cell walls in ester and ether covalent forms. After forages were ingested by ruminant animals or encountered rumen microbial fermentation in vitro, these cross-linkages form physical and chemical barriers to protect cell-wall carbohydrates from microbial attack and enzymatic hydrolysis. Additionally, increasing studies noted that FA presented some toxic effect on microbial growth in the rumen. In recent decades, many studies have addressed the relationships of ester and/or ether-linked FA with rumen nutrient digestibility, and there is still some controversy whether these linkages could be used as a predicator of forage digestibility in ruminants. The authors in this review summarized the possible relationships between ester and/or ether-linked FA and fiber digestion in ruminants. Rumen microbes, especially bacteria and fungi, were found capable of breaking down the ester linkages within plant cell walls by secreting feruloyl and p-coumaroyl esterase, resulting in the release of free FA and improvement of cell wall digestibility. The increasing evidence noted that these esterases secreted by rumen microbes presented synergistic effects with xylanase and cellulase to effectively hydrolyze forage cell walls. Some released FA were absorbed through the rumen wall directly and entered into blood circulation and presented antioxidant effects on host animals. The others were partially catabolized into volatile fatty acids by rumen microbes, and the possible catabolic pathways discussed. To better understand plant cell wall degradation in the rumen, the metabolic fate of FA along with lignin decomposition mechanisms are needed to be explored via future microbial isolation and incubation studies with aims to maximize dietary fiber intake and enhance fiber digestion in ruminant animals.

7.
Microorganisms ; 9(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34835326

ABSTRACT

Cottonseed meal (CSM) is an important protein feed source for dairy cows. Its inclusion in ruminant diets is limited due to the presence of the highly toxic gossypol though rumen microorganisms are believed to be capable of gossypol degrading and transforming. The objective of the present study was to isolate the gossypol-degrading bacteria from the rumen contents and to assess its potential for gossypol degradation in vitro. A strain named Lactobacillus agilis WWK129 was anaerobically isolated from dairy cows after mixed rumen microorganisms were grown on a substrate with gossypol as the sole carbon source. Furthermore, the strain was applied at 5% inoculum concentration in vitro to continuously ferment CSM at 39 °C for five days, and it presented gossypol degradability as high as 83%. Meanwhile, the CSM contents of crude protein, essential amino acids increased significantly along with the increase of lactic acid yield (p < 0.01). Compared with the original CSM, the fermented CSM contents of neutral detergent fiber and acid detergent fiber was remarkably decreased after the anaerobic fermentation (p < 0.01). In brief, the Lactobacillus strain isolated from the rumen is not only of great importance for gossypol biodegradation of CSM, but it could also be used to further explore the role of rumen microorganisms in gossypol degradation by the ruminants.

8.
AMB Express ; 11(1): 91, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34156579

ABSTRACT

Regarding whole cottonseed (WCS), cottonseed meal (CSM), and cottonseed hull (CSH), in situ rumen incubation was applied to determine their nutrient and gossypol degradation characteristics and bacterial colonization profile in lactating Holstein cows. Nylon bags containing the cotton by-products were incubated for 0, 6, 12, 24, 36, 48 and 72 h in the rumen, respectively. The relationship between nutrient degradability and free gossypol (FG) content were examined, and the differences in the composition and inferred gene function of the colonized microbiota were studied. As a result, CSM presented highest effective degradability of dry matter, neutral detergent fibre and acid detergent fibre, but the highest effective degradability of crude protein was found in WCS. Free gossypol disappearance rate increased significantly in the first 6 h, and it reached approximately 94% at 72 h of incubation among all samples. The level of FG did not affect nutrient degradability of cotton by-products. Significant differences were noted in attached bacterial community structure among cotton by-products after 24 h rumen incubation. Among the most abundant taxa at genus level, a greater abundance of Cercis gigantea and Succiniclasticum was observed in WCS samples, whereas the CSH and CSM samples contained a greater proportion of Prevotella 1 and Rikenellaceae RC9 gut group. The redundancy analysis revealed that the level of neutral detergent fibre, ether extract, and FG in cotton by-products were significantly positive related with the composition of the attached bacteria. Collectively, our results revealed the dynamics of degradation characteristics, and the difference in the composition of bacterial colonization. These findings are of importance for the targeted improvement of cotton by-products nutrient use efficiency in ruminants and further understanding of the gossypol degradation mechanism in the rumen.

9.
Toxics ; 9(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800444

ABSTRACT

Gossypol is a key anti-nutritional factor which limits the feeding application of cottonseed by-products in animal production. A 2 × 4 factorial in vitro experiment was conducted to determine the effect of gossypol addition levels of 0, 0.25, 0.5, and 0.75 mg/g on ruminal fermentation of a high-forage feed (HF, Chinese wildrye hay/corn meal = 3:2) in comparison with a low-forage feed (LF, Chinese wildrye hay/corn meal = 2:3). After 48 h of incubation, in vitro dry matter disappearance was greater in the LF than the HF group, while the cumulative gas production and asymptotic gas production were greater in the HF than the LF group (p < 0.05). Regardless of whatever ration type was incubated, the increasing gossypol addition did not alter in vitro dry matter disappearance. The asymptotic gas production, cumulative gas production, molar percentage of CO2 and H2 in fermentation gases, and microbial protein in cultural fluids decreased with the increase in the gossypol addition. Conversely, the gossypol addition increased the molar percentage of CH4, ammonia N, and total volatile fatty acid production. More than 95% of the gossypol addition disappeared after 48 h of in vitro incubation. Regardless of whatever ration type was incubated, the real-time PCR analysis showed that the gossypol addition decreased the populations of Fibrobactersuccinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, Prevotella ruminicola, Selenomonas ruminantium, and fungi but increased Ruminococcus flavefaciens, protozoa, and total bacteria in culture fluids in comparison with the control (p < 0.01). Additionally, the tendency of a smaller population was observed for R. albus, B. fibrisolvens, and fungi with greater inclusion of gossypol, but a greater population was observed for F. succinogenes, R. flavefaciens, S. ruminantium, protozoa, and total bacteria. In summary, the present results suggest that rumen microorganisms indeed presented a high ability to degrade gossypol, but there was an obvious detrimental effect of the gossypol addition on rumen fermentation by decreasing microbial activity when the gossypol inclusion exceeded 0.5 mg/g, and such inhibitory effect was more pronounced in the low-forage than the high-forage group.

10.
Ann Transl Med ; 8(7): 480, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32395524

ABSTRACT

BACKGROUND: Due to the "ceiling effect" of respiratory depression and the non-addictiveness, the consumption of dezocine is increasing quickly in the cancer surgery perioperative period for security and comfort reasons in China. Former studies find dezocine inhibits the norepinephrine transporters (NET) and serotonin transporters (SERT) and sigma-1opioid receptors. Given the complexity of the molecular mechanism, the effect of dezocine on tumor cells need to be studied. In this study, we investigated the effect of dezocine on HepG2 and Hep 3B liver cancer cell lines growth and glycolysis, and the molecular mechanisms behind. METHODS: HepG2 and Hep 3B cells viability and migration were measured by CCK8, Wound healing and transwell assay, Extracellular acidification rate (ECAR) was used to index the aerobic glycolysis of liver cancer cells and western blot analysis showed protein expression levels in the cells. SC79, an agonist of Akt, and the siRNA silence of Akt1 aimed to regulate Akt1 activity and expression in the reverse experiments. RESULTS: Dezocine played opposite roles in HepG2 and Hep 3B cells viability and migration in a concentration-dependent manner (P<0.01). Dezocine has diverse effects on aerobic glycolysis and adjusts the serine/threonine kinase 1 (Akt1)-glycogen synthase kinase-3ß (GSK-3ß) pathway. The effects of SC79 and the siRNA silence of Akt1 could reverse the effects of dezocine on HepG2 and Hep 3B cells. CONCLUSIONS: As an analgesic drug widely used in clinical practice, dezocine play reversed roles on HepG2 and Hep 3B cells viability and migration targeting Akt1/GSK-3ß pathway then the glycolysis in a concentration-dependent manner.

11.
Neural Regen Res ; 13(10): 1685-1692, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30136678

ABSTRACT

Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.

SELECTION OF CITATIONS
SEARCH DETAIL
...