Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1225, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336952

ABSTRACT

High quantum efficiency and wide-band detection capability are the major thrusts of infrared sensing technology. However, bulk materials with high efficiency have consistently encountered challenges in integration and operational complexity. Meanwhile, two-dimensional (2D) semimetal materials with unique zero-bandgap structures are constrained by the bottleneck of intrinsic quantum efficiency. Here, we report a near-mid infrared ultra-miniaturized graphene photodetector with configurable 2D potential well. The 2D potential well constructed by dielectric structures can spatially (laterally and vertically) produce a strong trapping force on the photogenerated carriers in graphene and inhibit their recombination, thereby improving the external quantum efficiency (EQE) and photogain of the device with wavelength-immunity, which enable a high responsivity of 0.2 A/W-38 A/W across a broad infrared detection band from 1.55 to 11 µm. Thereafter, a room-temperature detectivity approaching 1 × 109 cm Hz1/2 W-1 is obtained under blackbody radiation. Furthermore, a synergistic effect of electric and light field in the 2D potential well enables high-efficiency polarization-sensitive detection at tunable wavelengths. Our strategy opens up alternative possibilities for easy fabrication, high-performance and multifunctional infrared photodetectors.

2.
J Phys Chem Lett ; 15(9): 2485-2492, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38408427

ABSTRACT

We propose a two-dimensional carbon allotrope (named KT-graphene) by incorporating kagome and tetragonal lattices consisting of trigonal, quadrilateral, octagonal, and dodecagonal rings. The introduction of non-hexagonal rings can give rise to the localized electronic states that improve the chemical reactivity toward potassium, making KT-graphene a high-performance anode material for potassium-ion batteries. It shows a high theoretical capacity (892 mAh g-1), a low diffusion barrier (0.33 eV), and a low average open-circuit voltage (0.51 V). The presence of electrolyte solvents is propitious to boost the K-ion adsorption and diffusion capabilities. Moreover, one-dimensional nanotubes (KT-CNTs), rolled up by the KT-graphene sheet, are metallic regardless of the tube diameter. As the curvature increases, KT-CNTs exhibit significantly increased surface activity, which can promote the electron-donating ability of K. Furthermore, the curvature effect greatly enhances the efficiency of K diffusion on the inner surface compared to that on the outer surface.

3.
Nat Prod Res ; : 1-7, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695019

ABSTRACT

There is growing evidence that bioactive substances produced by microbial endophytes have applicability in medicine, agriculture and industry. To enrich the bioactive substances, in our search for new bioactive metabolites from fungi Aspergillus, the phytochemical reinvestigation on the Aspergillus sp. 0338 was carried out, and this led to the isolation of three new (1-3) and five known alkaloids (4-8). Their structures were elucidated by spectroscopic analysis, including extensive 1D and 2D NMR techniques, as well as comparison with literature values. Additionally, compounds 1-3 were evaluated for their anti-MRSA activities. The results revealed that compounds 1-3 exhibited good inhibitions with IZD of 15.2 ± 1.8, 14.6 ± 2.0, and 13.4 ± 2.2 mm, respectively.

4.
Nanoscale ; 15(23): 10057-10066, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37249020

ABSTRACT

Breast cancer is the most prevalent cancer globally. Early detection is crucial and can be achieved by detecting cancer biomarkers in blood, such as circulating miRNAs (microRNAs). In this study, we present a label-free detection method based on broadband multi-resonant infrared metasurface for surface-enhanced infrared absorption (SEIRA) spectroscopy to detect miRNAs. The SEIRA resonances were optimized to match the miRNA biomarker fingerprint regions in the range of 800 to 2000 cm-1 and 2800 to 3500 cm-1, resulting in a simulated resonance enhancement of up to 103 times. Nine patient samples (six cancerous and three non-cancerous) were measured using SEIRA multi-well sensor chips. A novel analysis method, SEIRA-AR, was also developed to benchmark the results against industry standards, such as quantitative reverse transcription polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Our results showed an excellent linear correlation with a Pearson's r value of up to 0.99 and an R Squared value of up to 0.98. This study represents the first use of a SEIRA sensor for biomarker detection on clinical breast cancer samples and introduces an analysis method that produces results comparable to industry standards. Our findings pave the way for routine cancer diagnosis in the future. Additionally, the method discussed can be generalized to other biosensing activities involving two-step binding processes with complementary molecule-capturing agents.


Subject(s)
Breast Neoplasms , Circulating MicroRNA , MicroRNAs , Humans , Female , MicroRNAs/analysis , Breast Neoplasms/genetics , Early Detection of Cancer , Biomarkers, Tumor
5.
Pest Manag Sci ; 79(10): 3721-3730, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37253683

ABSTRACT

BACKGROUND: Natural products are important sources of biopesticides to control plant virus, and flavonoids are identified as promising anti-tobacco mosaic virus (TMV) agents. Since Desmodium caudatum is a rich source of flavonoids, this study focuses on the discovery of the new anti-TMV active flavonoids from D. caudatum and their possible mode of action. RESULTS: Three new (compounds 1-3) and nine known (compounds 4-12) C-alkylated flavonoids were isolated from D. caudatum. To the best of our knowledge, the framework of 1-3 was reported in natural products for the first time. In addition, 1-3, 5, and 6 showed notable anti-TMV activity with inhibition rates in the range of 35.8-64.3% at a concentration of 50 µg/mL, and these rates are higher than that of positive control (with inhibition rates of 34.6% ± 2.8). In addition, the structure-activity relationship study revealed that the (pyrrol-2-yl)methyl moiety on flavone can significantly increases the activity. This result is helpful to find new anti-TMV inhibitors. CONCLUSION: C-Alkylated flavonoids showed potent activities against TMV with multiple modes of actions. The increase of defense-related enzyme activities, up-regulate the expression of defense related genes, down-regulate the expression of Hsp70 protein by inhibiting the related Hsp genes that are involved in tobacco resistance to TMV. By the actions mentioned earlier, the infection of TMV was influenced, thereby achieving the effects of control of TMV. The successful isolation of the earlier-mentioned flavonoids provide the new source of biopesticides to TMV proliferation, and also contribute to the utilization of D. caudatum. © 2023 Society of Chemical Industry.


Subject(s)
Flavonoids , Tobacco Mosaic Virus , Flavonoids/pharmacology , Biological Control Agents/pharmacology , Structure-Activity Relationship , Nicotiana , Antiviral Agents/pharmacology
6.
Bioresour Bioprocess ; 10(1): 39, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-38647640

ABSTRACT

Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.

7.
Sci Rep ; 12(1): 19229, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357510

ABSTRACT

Terahertz (THz) spectroscopy technique has been applied in ex vivo biomechanical properties analysis of human corneas. Upon the application of light pressure on the cornea, the photo elastic birefringent effect, anisotropic deformation, thickness changes and hydration levels will contribute to the sudden phase changes of terahertz time domain signal. The shelf lifetime study shows that the phase shift is reduced and cornea loose the biomechanical properties with the increase of hydration level. Mechanical behaviors have been further studied based on the "fresh" cut corneas with the similar hydration levels. THz signal was collected by focusing inside of the cornea to avoid the phase shift due to light stress caused movement of the corneal surface. By this way, the amount of THz signal refractive index variation is correlated to the elastic property of the corneas. The correlation between the THz signal phase shift and refractive index shift due to the corneal strain can be used to derive the elastic Young's modulus. Our results demonstrated the THz spectroscopy, as a non-contact and non-invasive detection method, could be potential for understanding the mechanism of corneal deformation under the action of intraocular pressure in the physiological environment in future.


Subject(s)
Cornea , Tonometry, Ocular , Humans , Cornea/physiology , Elastic Modulus , Intraocular Pressure , Technology , Biomechanical Phenomena
8.
Molecules ; 27(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35807544

ABSTRACT

As important factors to oolong tea quality, the accumulation and dynamic change in aroma substances attracts great attention. The volatile composition of oolong tea is closely related to the precursor contents. Fatty acids (FAs) and their derivatives are basic components of oolong tea fragrance during the postharvest process. However, information about the precursors of FAs during the postharvest process of oolong tea production is rare. To investigate the transformation of fatty acids during the process of oolong tea production, gas chromatograph−flame ionization detection (GC-FID) was conducted to analyze the composition of FAs. The results show that the content of total polyunsaturated FAs initially increased and then decreased. Specifically, the contents of α-linolenic acid, linoleic acid and other representative substances decreased after the turn-over process of oolong tea production. The results of partial least squares discrimination analysis (PLS-DA) showed that five types of FAs were obviously impacted by the processing methods of oolong tea (VIP > 1.0). LOX (Lipoxygenase, EC 1.13.11.12) is considered one of the key rate-limiting enzymes of long-chain unsaturated FAs in the LOX-HPL (hydroperoxide lyase) pathway, and the mechanical wounding occurring during the postharvest process of oolong tea production greatly elevated the activity of LOX.


Subject(s)
Camellia sinensis , Volatile Organic Compounds , Camellia sinensis/metabolism , Fatty Acids/analysis , Plant Leaves/chemistry , Tea , Volatile Organic Compounds/analysis
9.
J Agric Food Chem ; 70(19): 5860-5868, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35506591

ABSTRACT

Penicillium expansum, producer of a wide array of secondary metabolites, has the potential to be a source of new terpene synthases. In this work, a platform was constructed with Escherichia coli BL21(DE3) by enhancing its endogenous 2-methyl-d-erythritol-4-phosphate pathway to supply sufficient terpenoid precursors. Using this precursor-supplying platform, we discovered two sesquiterpene synthases from P. expansum: PeTS1, a new (+)-aristolochene synthase, and PeTS4, the first microbial (+)-bicyclogermacrene synthase. To enhance the sesquiterpene production by PeTS1, we employed a MBP fusion tag to improve the heterologous protein expression, resulting in the increase of aristolochene production up to 50 mg/L in a 72 h flask culture, which is the highest production reported to date. We also realized the first biosynthesis of (+)-bicyclogermacrene, achieving 188 mg/L in 72 h. This work highlights the great potential of this microbial platform for the discovery of new terpene synthases and opens new ways for the bioproduction of other valuable terpenoids.


Subject(s)
Alkyl and Aryl Transferases , Sesquiterpenes , Alkyl and Aryl Transferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Penicillium , Sesquiterpenes/metabolism , Terpenes/metabolism
10.
Bioresour Bioprocess ; 9(1): 82, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-38647602

ABSTRACT

Paclitaxel (Taxol™), an alkaloid of diterpenoid family, is one of the most widely used anti-cancer drugs due to its effectiveness against a variety of tumors. Rather than directly extraction and chemical synthesis of paclitaxel or its intermediates from yew plants, construction of a microbial cell factory for paclitaxel biosynthesis will be more efficient and sustainable. The challenge for biosynthesis of paclitaxel lies on the insufficient precursor, such as taxadien-5α-ol. In this study, we report a recombinant Escherichia coli strain constructed with a heterologous mevalonate pathway, a taxadiene synthase from yew, and a cytochrome P450-mediated oxygenation system for the de novo production of taxadien-5α-ol, the first product of the multi-step taxadiene oxygenation metabolism. The key enzymes including taxadiene synthases and cytochrome P450 reductases were screened, and the linker for fusing taxadiene-5α-hydroxylase with its reductase partner cytochrome P450 reductase was optimized. By reducing the metabolic burden and optimizing the fermentation conditions, the final production of total oxygenated taxanes was raised up to 27 mg L-1 in a 50-mL flask cultivation, of which the yield of taxadien-5α-ol was 7.0 mg L-1, representing approximately a 12-fold and 23-fold improvements, respectively, as compared with the initial titers. The engineered MVA pathway for the overproduction of terpenoid precursors can serve as an efficient platform for the production of other valuable terpenoids.

11.
Front Plant Sci ; 12: 738445, 2021.
Article in English | MEDLINE | ID: mdl-34745173

ABSTRACT

Aroma is an essential quality indicator of oolong tea, a tea derived from the Camellia sinensis L. plant. Carboxylic 6 (C6) acids and their derivative esters are important components of fatty acid (FA)-derived volatiles in oolong tea. However, the formation and regulation mechanism of C6 acid during postharvest processing of oolong tea remains unclear. To gain better insight into the molecular and biochemical mechanisms of C6 compounds in oolong tea, a combined analysis of alcohol dehydrogenase (ADH) activity, CsADH2 key gene expression, and the FA-derived metabolome during postharvest processing of oolong tea was performed for the first time, complemented by CsHIP (hypoxia-induced protein conserved region) gene expression analysis. Volatile fatty acid derivative (VFAD)-targeted metabolomics analysis using headspace solid-phase microextraction-gas chromatography time-of-flight mass spectrometry (HS-SPEM-GC-TOF-MS) showed that the (Z)-3-hexen-1-ol content increased after each turnover, while the hexanoic acid content showed the opposite trend. The results further showed that both the ADH activity and CsADH gene expression level in oxygen-deficit-turnover tea leaves (ODT) were higher than those of oxygen-turnover tea leaves (OT). The C6-alcohol-derived ester content of OT was significantly higher than that of ODT, while C6-acid-derived ester content showed the opposite trend. Furthermore, the HIP gene family was screened and analyzed, showing that ODT treatment significantly promoted the upregulation of CsHIG4 and CsHIG6 gene expression. These results showed that the formation mechanism of oolong tea aroma quality is mediated by airflow in the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway, which provided a theoretical reference for future quality control in the postharvest processing of oolong tea.

12.
J Biophotonics ; 14(9): e202100130, 2021 09.
Article in English | MEDLINE | ID: mdl-34105892

ABSTRACT

A Novel scalable approach using Terahertz (THz) waves together with the electromagnetic field simulation was applied to investigate four rabbits of eight rabbit corneas in vivo. One eye of each rabbits' corneas was edema induced; the other eye of the corneas served as the control. The simulation revealed the propagation of THz waves at a certain distance along the sub-surface of the cornea. THz spectra have been collected close to the corneal surface by deviating the direct reflection of the THz beam for the edema cornea, the reflected wave intensity for edema corneas is generally larger compared with the control cornea. Upon edema becomes severe at the end of the observation, the reflected wave intensities obtained by detector corresponding to the corneal deep stroma layer approach to the same value for all observed corneas. Good correlation is observed between central corneal thickness measurements and THz wave reflection signal intensities. Our results demonstrated that THz spectroscopy technique could obtain the information from different corneal sublayers.


Subject(s)
Cornea , Terahertz Spectroscopy , Animals , Edema , Rabbits , Technology
13.
J Biomed Opt ; 26(4)2021 04.
Article in English | MEDLINE | ID: mdl-33899380

ABSTRACT

SIGNIFICANCE: Corneal diseases is a major cause of reversible blindness in the world. Monitoring the progression of human corneal edema or corneal scarring to prevent the disease entering into the end stage is crucial. AIM: We present a method for sensing human corneal composition at different depths, namely focused on the epithelium and stromal layer, using high-sensitivity terahertz (THz) broadband spectroscopy. APPROACH: From the proposed methodology, the THz temporal and absorption spectra of human corneas at different edema stages have been studied. THz wave signals were collected from the direct reflection and four other collection points along the THz wave propagation direction as reviewed from the simulation THz electrical field. RESULT: Our results show that the epithelium layer acts as a good barrier to maintain hydration level of the stroma, and the quality of the epithelium can be used to predict the level of corneal swelling in corneal edema. At the detection points near to the incident point, the THz frequency spectra demonstrated interference oscillation behavior. At the final edema observing time, results showed that the epithelium lose its barrier properties. The intactness of the epithelium can be used to predict the edema severity in the final stage. When the detection points are further away from the incident point, the THz spectra are believed to contain information from stromal layer. Stromal absorption spectra demonstrated correlation with optical coherence tomography thickness results. CONCLUSION: The hydration concentration from stromal layer was further quantitatively calculated. At the end of the experiment, all the corneal hydration levels reach to the same value which shows that the edema hydration has reached maximum saturation. The information of individual sublayers of the cornea is obtained by characterizing noninvasively with the use of THz spectroscopy. To our knowledge, this is the first report of using THz for noninvasive characterization of sublayers of the cornea.


Subject(s)
Corneal Diseases , Corneal Injuries , Terahertz Spectroscopy , Cornea/diagnostic imaging , Edema , Humans
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119667, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33773432

ABSTRACT

Pulsed terahertz (THz) broadband spectroscopy and imaging were applied to investigate ex vivo rabbit corneal scar tissues. Scars with different depths and densities were created by laser ablation on four corneal samples while two corneal samples untouched were used as control. The THz time-domain spectroscopy and reconstructed images illustrated the scar tissue density and gave out depth variation distribution profiles. Calculated absorption coefficient spectra displayed extra absorption peaks compared with control corneas and refractive index spectra showed the optical properties changed at the corneal scar locations. THz spectroscopy and imaging demonstrated adequate contrast in reviewing the scar densities and locations and showed potential applications in depicting spatial distribution and composition changes of corneal scars.


Subject(s)
Corneal Injuries , Terahertz Spectroscopy , Animals , Diagnostic Imaging , Rabbits , Refractometry
16.
Nano Lett ; 20(11): 7964-7972, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33054225

ABSTRACT

Optical wavefront engineering has been rapidly developing in fundamentals from phase accumulation in the optical path to the electromagnetic resonances of confined nanomodes in optical metasurfaces. However, the amplitude modulation of light has limited approaches that usually originate from the ohmic loss and absorptive dissipation of materials. Here, an atomically thin photon-sieve platform made of MoS2 multilayers is demonstrated for high-quality optical nanodevices, assisted fundamentally by strong excitonic resonances at the band-nesting region of MoS2. The atomic thin MoS2 significantly facilitates high transmission of the sieved photons and high-fidelity nanofabrication. A proof-of-concept two-dimensional (2D) nanosieve hologram exhibits 10-fold enhanced efficiency compared with its non-2D counterparts. Furthermore, a supercritical 2D lens with its focal spot breaking diffraction limit is developed to exhibit experimentally far-field label-free aberrationless imaging with a resolution of ∼0.44λ at λ = 450 nm in air. This transition-metal-dichalcogenide (TMDC) photonic platform opens new opportunities toward future 2D meta-optics and nanophotonics.

17.
Nat Nanotechnol ; 15(8): 675-682, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32601449

ABSTRACT

The development of infrared photodetectors is mainly limited by the choice of available materials and the intricate crystal growth process. Moreover, thermally activated carriers in traditional III-V and II-VI semiconductors enforce low operating temperatures in the infrared photodetectors. Here we demonstrate infrared photodetection enabled by interlayer excitons (ILEs) generated between tungsten and hafnium disulfide, WS2/HfS2. The photodetector operates at room temperature and shows an even higher performance at higher temperatures owing to the large exciton binding energy and phonon-assisted optical transition. The unique band alignment in the WS2/HfS2 heterostructure allows interlayer bandgap tuning from the mid- to long-wave infrared spectrum. We postulate that the sizeable charge delocalization and ILE accumulation at the interface result in a greatly enhanced oscillator strength of the ILEs and a high responsivity of the photodetector. The sensitivity of ILEs to the thickness of two-dimensional materials and the external field provides an excellent platform to realize robust tunable room temperature infrared photodetectors.

18.
Food Sci Nutr ; 8(1): 104-113, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993137

ABSTRACT

Aroma is an important index of tea quality. The volatile C6-compounds formed from linoleic and linolenic acids in tea leaf lipids are essential components of tea. C6-compounds are formed and transformed during the postharvest process of tea leaves. However, the metabolic flux of these C6-compounds, the activities of related enzymes, and the transcription of related genes during the postharvest process of oolong tea remain unclear. In this study, the chemical profiles of C6-aldehydes and C6-alcohols, the pattern of ADH enzyme activity, and the level of CsADH gene expression during the postharvest process of oolong tea were investigated. We found that the turnover process had a positive effect on the accumulation of C6-alcohols and simultaneously induced ADH activity, especially during the withering stage. The expression of CsADH peaked during the turnover stage. The relative expression level of CSA019598 typically increased during the postharvest process. Correlation analysis demonstrated that CSA019598 expression increased as ADH activity increased. This finding suggests that CSA019598 may play a prominent role in regulating ADH. These results advance our understanding of C6-compound formation during the postharvest process of oolong tea. We aim to evaluate how green leaf volatiles affect the enzymatic formation and genetic transcription of aromatic compounds in oolong tea in future studies.

19.
PeerJ ; 7: e6385, 2019.
Article in English | MEDLINE | ID: mdl-30723635

ABSTRACT

Tea is one of three major non-alcoholic beverages that are popular all around the world. The economic value of tea product largely depends on the post-harvest physiology of tea leaves. The utilization of quantitative reverse transcription polymerase chain reaction is a widely accepted and precise approach to determine the target gene expression of tea plants, and the reliability of results hinges on the selection of suitable reference genes. A few reliable reference genes have been documented using various treatments and different tissues of tea plants, but none has been done on post-harvest leaves during the tea manufacturing process. The present study selected and analyzed 15 candidate reference genes: Cs18SrRNA, CsGADPH, CsACT, CsEF-1α, CsUbi, CsTUA, Cs26SrRNA, CsRuBP, CsCYP, CselF-4α, CsMON1, CsPCS1, CsSAND, CsPPA2, CsTBP. This study made an assessment on the expression stability under two kinds of post-harvest treatment, turn over and withering, using three algorithms-GeNorm, Normfinder, and Bestkeeper. The results indicated that the three commonly used reference genes, CsTUA, Cs18SrRNA, CsRuBP, together with Cs26SrRNA, were the most unstable genes in both the turn over and withering treatments. CsACT, CsEF-1α, CsPPA2, and CsTBP were the top four reference genes in the turn over treatment, while CsTBP, CsPCS1, CsPPA2, CselF-4α, and CsACT were the five best reference genes in the withering group. The expression level of lipoxygenase genes, which were involved in a number of diverse aspects of plant physiology, including wounding, was evaluated to validate the findings. To conclude, we found a basis for the selection of reference genes for accurate transcription normalization in post-harvest leaves of tea plants.

20.
Nanotechnology ; 26(25): 255201, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-26041560

ABSTRACT

Branchlike nano-electrode structures were found to improve the THz emission intensity of a photomixer by approximately one order of magnitude higher than that of a photomixer with one row of nano-electrodes separated by the same 100 nm gap. The enhancement is attributed to a more efficient collection of generated carriers, which is in turn due to a more intense electric field under the branchlike nano-electrodes' structures. This is coupled with an increased number of effective areas where strong tip-to-tip THz field enhancements were observed. The optical-to-THz conversion efficiency of the photomixers with the new branchlike nano-electrodes was found to be 10 times higher. The more efficient THz photomixer will greatly benefit the development of continuous-wave THz imaging and spectroscopy systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...