Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Research (Wash D C) ; 7: 0498, 2024.
Article in English | MEDLINE | ID: mdl-39381793

ABSTRACT

Background: B-cell receptor-associated protein 31 (BCAP31) has protective effects against alveolar epithelial type II cells (AECII) damage by inhibiting mitochondrial injury in acute lung injury (ALI) induced by lipopolysaccharide (LPS), whereas the precise mechanism is still unclear. It is known that PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy can remove damaged mitochondria selectively, which may be involved in BCAP31 protection against mitochondrial injury. Methods: In the current study, ALI mice models were established by using surfactant protein C (Sftpc)-BCAP31 transgenic mice (BCAP31TG mice) and AECII-specific BCAP31 knockout mice (BCAP31CKO mice) treated with LPS. Results: BCAP31 expression in lung tissue and AECII were inhibited in ALI mice. Under LPS challenge, lower level of BCAP31 was found to correlate positively with pathological injury of the lung, respiratory dysfunction, mortality rates, inflammation response, and AECII damage. Further study showed that down-regulation of BCAP31 induced decreased phosphorylation of PINK1 via reduced binding to PINK1, thereby restraining PINK1/Parkin-mediated mitophagy. Down-regulation of mitophagy promoted mitochondrial injury, as shown by the increase in mitochondrial permeability transition pore opening rate, together with enhanced mitochondrial reactive oxygen species (mROS), which were accompanied by increased cellular apoptosis and reactive oxygen species (ROS). The increased cellular ROS contributed to the inflammatory response via activation of nuclear factor κB (NF-κB). In contrast, BCAP31 overexpression promoted phosphorylation of PINK1 and PINK1/Parkin-mediated mitophagy, thus blocking the mROS/ROS/NF-κB pathway, favoring a protective condition that ultimately led to the inhibition of AECII apoptosis and inflammatory response in LPS-induced ALI. Conclusion: Ultimately, BCAP31 alleviated ALI by activating PINK1/Parkin-mediated mitophagy and blocking the mROS/ROS/NF-κB pathway in AECII.

2.
Anal Chem ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375934

ABSTRACT

Hepatic fibrosis is a common chronic liver disease, and its severe progression can culminate in cirrhosis and hepatocellular carcinoma (HCC). Precise diagnosis and staging of hepatic fibrosis are essential to prevent liver cirrhosis and HCC. Simultaneous detection of multiplex collagen biomarkers within liver tissue is crucial for staging hepatic fibrosis. We herein for the first time constructed multiplex collagen fingerprinting for the staging of hepatic fibrosis using high-precision fluorescence-guided surface-enhanced Raman scattering (SERS) imaging. SERS/fluorescent probes, collectively referred to as SF, comprising silver nanoparticles (Ag NPs), Raman reporters, and FAM-labeled collagen targeting peptides. These probes exhibit exceptional aqueous dispersion and stability, attributed to the increased number of Asp residues in CTP. Meanwhile, SF probes, namely SF-I, SF-IV, and SF-D have demonstrated specific targeting of type I, type IV, and denatured collagen, respectively, within hepatic fibrotic tissues. The results from fluorescence-guided SERS imaging underscore the method's capacity for typing, localization, and quantification of collagen, thus providing novel insights into collagen's role in the development of hepatic fibrosis. The collagen fingerprinting strategy offers a potent toolkit for the multifaceted profiling of collagen superfamilies, holding significant implications for the precise staging of hepatic fibrosis.

3.
Heliyon ; 10(15): e35797, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170480

ABSTRACT

Background: Coronary atherosclerotic heart disease (CHD) is highly prevalent in Northwest China; however, effective preventive measures are limited. This study aimed to develop metabolic risk models tailored for the primary and secondary prevention of CHD in Northwest China. Methods: This hospital-based cross-sectional study included 744 patients who underwent coronary angiography. Data on demographic characteristics, comorbidities, and serum biochemical indices of the participants were collected. Three machine learning algorithms-recursive feature elimination, random forest, and least absolute shrinkage and selection operator-were employed to construct risk models. Model validation was performed using receiver operating characteristic and calibration curves, and the optimal cutoff values for significant risk factors were determined. Results: The predictive model for CHD onset included sex, overweight/obesity, and hemoglobin A1c (HbA1c) levels. For CHD progression to multiple coronary artery disease, the model included age, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and HbA1c levels. The model predicting an increased coronary Gensini score included sex, overweight/obesity, TC, LDL-C, high-density lipoprotein cholesterol, lipoprotein(a), and HbA1c levels. Notably, the optimal cutoff values for HbA1c and lipoprotein(a) for determining CHD progression were 6 % and 298 mg/L, respectively. Conclusions: Robust metabolic risk models were established, offering significant value for both the primary and secondary prevention of CHD in Northwest China. Weight loss, strict hyperglycemic control, and improvement in dyslipidemia may help prevent or delay the occurrence and progression of CHD in this region.

4.
Diabetes Metab Syndr Obes ; 17: 2725-2734, 2024.
Article in English | MEDLINE | ID: mdl-39072345

ABSTRACT

Purpose: The prevalence of diabetes in China is increasing, influenced by economic and genetic factors, with varying rates across regions. The Hakka population in Ganzhou city has unique exposures compared to surrounding districts, while limited research reported the epidemiological characteristics of type 2 diabetes mellitus (T2DM) in this population. This study aims to investigate the prevalence and influencing factors of T2DM among the population, thereby establishing a robust foundation for disease prevention and control measures. Patients and Methods: In 2017, a multistage random sampling method selected 3028 individuals from Ganzhou City's permanent resident population. Physical examinations, blood tests, and questionnaire surveys were conducted for data collection, with binary logistic regression analysis used to examine factors affecting T2DM prevalence. Results: A total of 2978 valid samples were included in this study. The average age of the surveyed population was 52.83±7.88 years, comprising 966 males and 2012 females. The prevalence rates of T2DM were 11.8% and 12.9% in males and females, respectively, while the standardized prevalence rate was recorded as 9.1%. Logistic regression analysis revealed that age (Odds Ratio[OR]=1.05, 95% Confidence Interval [CI]:1.03-1.06), hypertension (OR=2.22, 95% CI:1.71-2.93), family history of diabetes (OR= 3.54, 95% CI: 2.58-4.85), overweight (OR=1.73, 95% CI: 1.20-2.48), high total cholesterol (OR=1.17, 95% CI:1.09-1.27), elevated low-density lipoprotein cholesterol (OR=1.19, 95% CI:1.00-1.40) and serum insulin (OR=1.05, 95% CI:1.03-1.06) were identified as significant risk factors for T2DM, Conversely, a higher level of high-density lipoprotein cholesterol (OR=0.55, 95% CI:0.36-0.84) was found to be inversely related to T2DM development. Conclusion: The prevalence of T2DM in Ganzhou city has significantly increased. The effective implementation of comprehensive management strategies aimed at addressing hypertension, overweight, dyslipidemia, and abnormal serum insulin level is essential for promoting overall well-being and efficiently controlling the prevalence of T2DM.

5.
Macromol Rapid Commun ; : e2400307, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987897

ABSTRACT

Most nonconventional luminogens enjoy good water solubility and biocompatibility, showing unique application prospects in fields like biological imaging. Although clustering-triggered emission (CTE) mechanisms have been proposed to explain such emissions, it has not been thoroughly elucidated, which limits their development and application. Herein, the photoluminescence properties of polyacrylamide prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization aqueous solution are utilized to further investigate the effects of changes in concentration, in order to elucidate the emission mechanism through transmission electron microscopy (TEM), small angle X-ray scattering (SAXS) and theoretical calculation. The results showed that the size distribution, morphology, and distance between the polymer clusters formed in the water solution are successfully correlated with the cluster emission centers. The emission mechanism of nonconventional luminogens solutions is more clearly and intuitively elucidated, which has a promoting effect on the emission and application of this field. It provides a strategy a strategy to clarify the CTE mechanism of nonconventional luminogens solution more clearly.

6.
Small ; : e2403710, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884192

ABSTRACT

Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd3Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd3Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy (ΔGH) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni-doped Pd3Sn (Ni0.1Pd2.9Sn) show much lower overpotential (-29 mV vs RHE) and Tafel slope (17 mV dec-1) than Pd3Sn (-39 mV vs RHE, 25 mV dec-1) at a current density of 10 mA cm-2. Significantly, the Ni0.1Pd2.9Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni0.1Pd2.9Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.

7.
Front Microbiol ; 15: 1410968, 2024.
Article in English | MEDLINE | ID: mdl-38873149

ABSTRACT

Introduction: Sweet sorghum juice is a typical production feedstock for natural, eco-friendly sweeteners and beverages. Clostridium tyrobutyricum is one of the widely used microorganisms in the food industry, and its principal product, bio-butyric acid is an important food additive. There are no published reports of Clostridium tyrobutyricum producing butyric acid using SSJ as the sole substrate without adding exogenous substances, which could reach a food-additive grade. This study focuses on tailoring a cost-effective, safe, and sustainable process and strategy for their production and application. Methods: This study modeled the enzymolysis of non-reducing sugars via the first/second-order kinetics and added food-grade diatomite to the hydrolysate. Qualitative and quantitative analysis were performed using high-performance liquid chromatography, gas chromatography-mass spectrometer, full-scale laser diffraction method, ultra-performance liquid chromatography-tandem mass spectrometry, the cell double-staining assay, transmission electron microscopy, and Oxford nanopore technology sequencing. Quantitative real-time polymerase chain reaction, pathway and process enrichment analysis, and homology modeling were conducted for mutant genes. Results: The treated sweet sorghum juice showed promising results, containing 70.60 g/L glucose and 63.09 g/L fructose, with a sucrose hydrolysis rate of 98.29% and a minimal sucrose loss rate of 0.87%. Furthermore, 99.62% of the colloidal particles and 82.13% of the starch particles were removed, and the concentrations of hazardous substances were effectively reduced. A food microorganism Clostridium tyrobutyricum TGL-A236 with deep utilization value was developed, which showed superior performance by converting 30.65% glucose and 37.22% fructose to 24.1364 g/L bio-butyric acid in a treated sweet sorghum juice (1:1 dilution) fermentation broth. This titer was 2.12 times higher than that of the original strain, with a butyric acid selectivity of 86.36%. Finally, the Genome atlas view, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and evolutionary genealogy of genes: Non-supervised Orthologous (eggNOG) functional annotations, three-dimensional structure and protein cavity prediction of five non-synonymous variant genes were obtained. Conclusion: This study not only includes a systematic process flow and in-depth elucidation of relevant mechanisms but also provides a new strategy for green processing of food raw materials, improving food microbial performance, and ensuring the safe production of food additives.

8.
Autophagy ; 20(9): 1928-1947, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38752369

ABSTRACT

Macroautophagy/autophagy and apoptosis are pivotal interconnected host cell responses to viral infection, including picornaviruses. Here, the VP3 proteins of picornaviruses were determined to trigger autophagy, with the autophagic flux being triggered by the TP53-BAD-BAX axis. Using foot-and-mouth disease virus (FMDV) as a model system, we unraveled a novel mechanism of how picornavirus hijacks autophagy to bolster viral replication and enhance pathogenesis. FMDV infection induced both autophagy and apoptosis in vivo and in vitro. FMDV VP3 protein facilitated the phosphorylation and translocation of TP53 from the nucleus into the mitochondria, resulting in BAD-mediated apoptosis and BECN1-mediated autophagy. The amino acid Gly129 in VP3 is essential for its interaction with TP53, and crucial for induction of autophagy and apoptosis. VP3-induced autophagy and apoptosis are both essential for FMDV replication, while, autophagy plays a more important role in VP3-mediated pathogenesis. Mutation of Gly129 to Ala129 in VP3 abrogated the autophagic regulatory function of VP3, which significantly decreased the viral replication and pathogenesis of FMDV. This suggested that VP3-induced autophagy benefits viral replication and pathogenesis. Importantly, this Gly is conserved and showed a common function in various picornaviruses. This study provides insight for developing broad-spectrum antivirals and genetic engineering attenuated vaccines against picornaviruses.Abbreviations: 3-MA, 3-methyladenine; ATG, autophagy related; BAD, BCL2 associated agonist of cell death; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X, apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCL2, BCL2 apoptosis regulator; BID, BH3 interacting domain death agonist; BIP-V5, BAX inhibitor peptide V5; CFLAR/FLIP, CASP8 and FADD like apoptosis regulator; CPE, cytopathic effects; CQ, chloroquine; CV, coxsackievirus; DAPK, death associated protein kinase; DRAM, DNA damage regulated autophagy modulator; EV71, enterovirus 71; FMDV, foot-and-mouth disease virus; HAV, hepatitis A virus; KD, knockdown; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MOI, multiplicity of infection; MTOR, mechanistic target of rapamycin kinase; PML, promyelocytic leukemia; PV, poliovirus; SVA, Seneca Valley virus; TCID50, 50% tissue culture infectious doses; TOR, target of rapamycin. TP53/p53, tumor protein p53; WCL, whole-cell lysate.


Subject(s)
Autophagy , Foot-and-Mouth Disease Virus , Tumor Suppressor Protein p53 , Virus Replication , bcl-2-Associated X Protein , bcl-Associated Death Protein , Animals , Apoptosis , Autophagy/physiology , bcl-2-Associated X Protein/metabolism , bcl-Associated Death Protein/metabolism , Capsid Proteins/metabolism , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease/metabolism , Foot-and-Mouth Disease Virus/physiology , Picornaviridae/physiology , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Virus Replication/physiology , Female , Guinea Pigs
9.
Int J Biometeorol ; 68(9): 1789-1798, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38802581

ABSTRACT

This study used the time series data of Ganzhou city to explore the individual and interaction effects of temperature and humidity on COPD death, and identify vulnerable subgroups of the population. We collected daily COPD mortality and meteorological data in Ganzhou from 2016 to 2019. The nonlinear distribution lag model was used to examine the associations and interaction between daily mean temperature and humidity and COPD mortality. For the total population, male and 65 years old or above, the relative risk (RR) for COPD mortality could be significant at extremely low temperature (3.3 ℃), reaching 1.799 (95% confidence interval [CI]: 1.216, 2.662), 1.894 (95% CI: 1.164, 3.084) and 1.779 (95% CI:1.185, 2.670). Also, at extremely low humidity (47.8%), the risk reached 1.888 (95% CI: 1.217, 2.930), 1.837 (95% CI: 1.066, 3.165) and 2.166 (95% CI: 1.375, 3.414). The cumulative COPD death risk for females was 3.524 (95% CI: 1.340, 9.267) at high temperature (30.7 ℃), 1.953(95% CI: 1.036, 3.683) at low humidity (47.8%) and 1.726 (95% CI: 1.048, 2.845) at high humidity (96.7%). For the total COPD deaths and subgroups, the interaction effects between daily temperature and humidity were not significant (p > 0.05). Both extremely low temperature and low humidity increased the risk of COPD death in Ganzhou city, especially for males and people over 65 years old. Females were more sensitive to extremely high temperature and humidity. Patients with COPD should pay attention to self-protection under extreme temperature and humidity weather conditions.


Subject(s)
Humidity , Pulmonary Disease, Chronic Obstructive , Temperature , Humans , Pulmonary Disease, Chronic Obstructive/mortality , Male , China/epidemiology , Female , Aged , Middle Aged , Cities/epidemiology , Adult
10.
Sci Rep ; 14(1): 11974, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796639

ABSTRACT

This study aimed to explore the link between various forms of obesity, including body mass index (BMI) and waist circumference (WC), and the risk of dyslipidemia among Chinese residents. We selected the study population through a multi-stage random sampling method from permanent residents aged 35 and older in Ganzhou. Obesity was categorized as non-obesity, general obesity, central obesity, or compound obesity according to established diagnostic criteria. We employed a logistic regression model to assess the relationship between different types of obesity and the risk of dyslipidemia. Additionally, we used the restricted cubic spline model to analyze the association between BMI, WC, and the risk of dyslipidemia. The study included 2030 residents aged 35 or older from Ganzhou, China. The prevalence of dyslipidemia was found to be 39.31%, with an age-standardized prevalence of 36.51%. The highest prevalence of dyslipidemia, 58.79%, was observed among those with compound obesity. After adjusting for confounding factors, we found that the risk of dyslipidemia in those with central and compound obesity was respectively 2.00 (95% CI 1.62-2.46) and 2.86 (95% CI 2.03-4.03) times higher than in the non-obese population. Moreover, the analysis using the restricted cubic spline model indicated a nearly linear association between BMI, WC, and the risk of dyslipidemia. The findings emphasize the significant prevalence of both dyslipidemia and obesity among adults aged 35 and above in Ganzhou, China. Notably, individuals with compound obesity are at a substantially increased risk of dyslipidemia. Therefore, it is crucial to prioritize the use of BMI and WC as screening and preventive measures for related health conditions.


Subject(s)
Body Mass Index , Dyslipidemias , Obesity , Waist Circumference , Humans , Middle Aged , Dyslipidemias/epidemiology , Male , Female , Obesity/epidemiology , Obesity/complications , Prevalence , Aged , China/epidemiology , Adult , Risk Factors , Aged, 80 and over
11.
Enzyme Microb Technol ; 178: 110447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626534

ABSTRACT

Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.


Subject(s)
Clostridium butyricum , Mutation , Probiotics , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Clostridium butyricum/radiation effects , Carbon/metabolism , Animals , Cellulase/metabolism , Cellulase/genetics , Amylases/metabolism , Amylases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
Brain Behav ; 14(3): e3430, 2024 03.
Article in English | MEDLINE | ID: mdl-38433103

ABSTRACT

BACKGROUND: Craniopharyngiomas are low-grade malignancies (WHO I) in the sellar region. Most cases of childhood-onset craniopharyngioma are adamantinomatous craniopharyngioma, and neurosurgery is the treatment of choice. Affected patients have postoperative complications, including water and electrolyte disturbances, because these malignancies develop near the hypothalamus and pituitary gland. Determining postoperative serum sodium fluctuation patterns in these patients can reduce postoperative mortality and improve prognosis. OBJECTIVE: To measure changes in serum sodium levels in pediatric patients who underwent craniopharyngioma surgery and identify influencing factors. METHODS: This retrospective study measured the serum sodium levels of 202 patients aged 0-18 years who underwent craniopharyngioma resection in Beijing Tiantan Hospital and Beijing Children's Hospital and identified predictors of severe hyponatremia and hypernatremia. RESULTS: The mean age of the cohort was 8.35 ± 4.35 years. The prevalence of hypernatremia, hyponatremia, and their severe forms (serum Na+  > 150 mmol/L and serum Na+  < 130 mmol/L) within 14 days after surgery was 66.3%, 72.8%, 37.1%, and 40.6%, respectively. The mean postoperative serum sodium level showed a triphasic pattern, characterized by two peaks separated by a nadir. Sodium levels peaked on days 2 (143.6 ± 7.6 mmol/L) and 14 (143.2 ± 6.7 mmol/L) and reached their lowest on day 6 (135.5 ± 7.5 mmol/L). A total of 31 (15.3%) patients met the diagnostic threshold for hyponatremia and hypernatremia of the triphase response, whereas 116 (57.4%) patients presented this pattern, regardless of met the diagnostic criteria or not. The prevalence of severe hyponatremia varied depending on preoperative endocrine hormone deficiency, tumor status (primary or recurrent), and surgical approach. CONCLUSIONS: Serum sodium levels after craniopharyngioma resection in children showed a triphasic pattern in most cases. The risk of postoperative hyponatremia varied depending on preoperative endocrine hormone deficiency, tumor status (primary or recurrent), and surgical approach.


Subject(s)
Craniopharyngioma , Hypernatremia , Hyponatremia , Pituitary Neoplasms , Humans , Child , Child, Preschool , Craniopharyngioma/surgery , Hypernatremia/epidemiology , Hypernatremia/etiology , Hyponatremia/epidemiology , Hyponatremia/etiology , Retrospective Studies , Pituitary Neoplasms/surgery , Hormones , Sodium
13.
Cell Metab ; 36(2): 438-453.e6, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38325338

ABSTRACT

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.


Subject(s)
Diabetes Mellitus , Paraventricular Hypothalamic Nucleus , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Transcriptome/genetics , Hypothalamus/metabolism , Obesity/metabolism , Diabetes Mellitus/metabolism , Gene Expression Profiling
14.
Neuron ; 112(7): 1081-1099.e7, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38290516

ABSTRACT

Oxytocin (OXT) plays important roles in autonomic control and behavioral modulation. However, it is unknown how the projection patterns of OXT neurons align with underlying physiological functions. Here, we present the reconstructed single-neuron, whole-brain projectomes of 264 OXT neurons of the mouse paraventricular hypothalamic nucleus (PVH) at submicron resolution. These neurons hierarchically clustered into two groups, with distinct morphological and transcriptional characteristics and mutually exclusive projection patterns. Cluster 1 (177 neurons) axons terminated exclusively in the median eminence (ME) and have few collaterals terminating within hypothalamic regions. By contrast, cluster 2 (87 neurons) sent wide-spread axons to multiple brain regions, but excluding ME. Dendritic arbors of OXT neurons also extended outside of the PVH, suggesting capability to sense signals and modulate target regions. These single-neuron resolution observations reveal distinct OXT subpopulations, provide comprehensive analysis of their morphology, and lay the structural foundation for better understanding the functional heterogeneity of OXT neurons.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Animals , Mice , Hypothalamus , Neurons/physiology , Oxytocin/physiology , Paraventricular Hypothalamic Nucleus/physiology
15.
Food Chem ; 441: 138324, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38176145

ABSTRACT

To develop the application of wheat bran and improve the nutrition and anti-staling capacity of Chinese steamed bread (CSB), oleic acid-esterified wheat bran (OWB) was prepared by esterification of wheat bran with oleic acid, and its physicochemical properties, structure, and quality improvement for CSB during refrigerated storage were investigated. The hydrophilic-lipophilic balance value of OWB was 16.0, the maximum degree of substitution was 0.146, and its emulsifying capacity was similar to that of glycerol monostearate. The starch gelatinization degree of CSB containing 3 % OWB and the control decreased by 19.55 % and 27.12 % within 7 days of refrigerated storage, respectively, while the hardness of CSB with OWB was lower than that with wheat bran. OWB inhibited starch recrystallization and increased bound water in the corresponding CSB, which effectively delayed starch retrogradation. OWB had a positive emulsifying capacity and showed potential as a functional material for preventing retrogradation of starch-based foods.


Subject(s)
Bread , Dietary Fiber , Bread/analysis , Dietary Fiber/analysis , Quality Improvement , Oleic Acid , Starch/chemistry , Steam , China
16.
Eur J Clin Nutr ; 78(1): 54-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37816846

ABSTRACT

BACKGROUND AND OBJECTIVES: Cumulative lipid profile burden is designed to dynamically measure lipid accumulation, and its effect on hypertension has been poorly studied. Our main purpose was to investigate the effect of cumulative lipid profile burden on the incidence of essential hypertension (EH) and to investigate whether cumulative lipid burden mediates the pathogenesis of the effects of diet and obesity on EH. SUBJECTS AND METHODS: A total of 1295 participants were included in the study, which started in 2017. The average follow-up time was 2.98 years. A total of 240 EH patients occurred during the follow-up period. RESULTS: The HR (95% CI) of the highest quartile in cumulative Total cholesterol (TC), triglyceride (TG) and high density lipoprotein (HDL) burden were 1.747 (1.145 - 2.664), 1.502 (1.038 - 2.173), 0.615 (0.413 - 0.917) for incidence of EH respectively, compared to the respective reference groups. Participants with EH consumed more red meat and refined grains, and red meat was positively associated with cumulative TC burden. BMI and Waist-To-Height Ratio (WHtR) increased the incidence of EH, and obesity was positively correlated with cumulative TG burden. Mediating analysis showed that cumulative TG had a partial mediating effect in the causal relationship between obesity and EH, and Mendelian randomization (MR) also proved this result. Diet was not found to influence EHn through cumulative lipid profile burden. CONCLUSIONS: The cumulative TG burden partially mediates the effect of obesity on EH.


Subject(s)
Hypertension , Humans , Cohort Studies , Body Mass Index , Hypertension/epidemiology , Hypertension/etiology , Obesity/complications , Triglycerides , Essential Hypertension , Diet , China/epidemiology , Cholesterol, HDL
17.
Small ; 20(13): e2307040, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37967337

ABSTRACT

The practical application of Li-S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high-temperature condition owing to the inevitable increase of polysulfides' solubility and diffusion rate. Herein, tungsten-doped vanadium dioxide (W-VO2) micro-flowers are employed with first-order metal-insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W-VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature-induced in-suit MIT property endows the W-VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid-to-solid conversion, and outstanding diffusion kinetics of Li-ion under high temperatures. Benefiting from these advantages, the Li-S batteries with W-VO2 modified separator exhibit significantly improved rate and long-term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase-changing materials for high-temperature Li-S batteries.

18.
Int J Biol Macromol ; 257(Pt 2): 128591, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052287

ABSTRACT

In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 µmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.


Subject(s)
Glutens , Maillard Reaction , Glutens/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrolysis , Solubility
19.
Materials (Basel) ; 16(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959433

ABSTRACT

Dual-phase high-entropy alloys with excellent room temperature and high-temperature properties have been widely studied as potential high-temperature structural materials. However, interface weakening causes its high-temperature performance to decline at higher temperatures, severely limiting further development. In this study, a series of Al17Cr10Fe36Ni36Mo1Hfx (x = 0, 0.03, 0.15, 0.3, 0.5, and 0.8 at%) alloys were prepared to study the effect of Hf content on the microstructure and mechanical properties of the matrix alloy. The results indicate that with the addition of the Hf, the Hf-rich phase began to precipitate at the interface and inside the B2 phase in the matrix alloy. In contrast, the morphology of both the FCC and B2 phases had no noticeable change. With the increase in Hf content, the high-temperature strength and ductility of the alloy first increased and then decreased, while the room temperature performance remained almost unchanged. Benefiting from the hindrance of the Hf-rich phase to grain boundary sliding and dislocation movement during high-temperature deformation, the tensile strength, yield strength, and plasticity of the matrix alloy increased from 474 MPa, 535 MPa, and 8.7% to 816 MPa, 923 MPa, and 42.0% for the Al17Cr10Fe36Ni36Mo1Hf0.5 alloys, respectively. This work provides a new path for designing a high-entropy alloy with excellent high-temperature mechanical properties.

20.
Chin Med J (Engl) ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38030389

ABSTRACT

BACKGROUND: Ebstein's anomaly (EA) is a rare and complex congenital heart anomaly, and the effect of surgical treatment is not ideal. This study aims to introduce our experience in management strategies, surgical techniques, and operative indications for patients with Ebstein's anomaly. METHODS: A retrospective study of 258 operations was performed in 253 patients by the same cardiac surgeon in The First Hospital of Tsinghua University between March 2004 and January 2020. 32 patients had previously received cardiac surgery in other hospitals. The clinical data including diagnosis, operative indications, techniques, pathological changes, and survival rates were collected and analyzed. RESULTS: Anatomical correction was performed in 203 (78.7%) operations, 1½ ventricle repair in 38 (14.7%) operations, tricuspid valve repair only in four operations (1.6%), tricuspid valve replacement in ten (3.9%), total cavopulmonary connection (TCPC) in two (0.8%), and Glenn operation in one operation (0.4%). Reoperation was performed in five patients (2.0%) during hospitalization. Among them, tricuspid valve replacement was performed in one patient, 1½ ventricle repair in two patients, and tricuspid valve annulus reinforcement in two patients. Five patients died with an early mortality rate of 2.0%. Complete atrioventricular conduction block was complicated in one patient (0.4%). A total of 244 patients was followed up (four in the 253 patients lost) with a duration of 3.0-168.0 (87.6 ± 38.4) months. Cardiac function of 244 patients improved significantly with mean New York Heart Association (NYHA) functional class recovery from 3.5 to 1.1. The mean grade of tricuspid valve regurgitation improved from 3.6 to 1.5. Three late deaths (1.2%) occurred. The survival rates at five and ten years after surgery were 98.6% and 98.2%, respectively. Reoperation was performed in five patients (2.0%) during the follow-up period. CONCLUSION: Based on our management strategies and operative principles and techniques, anatomical correction of EA is capable of achieving excellent long-term results, and low rates of TCPC, 1½ ventricle repair and valvular replacement.

SELECTION OF CITATIONS
SEARCH DETAIL