Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Environ Int ; 184: 108470, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324930

ABSTRACT

From 2013 to 2019, a series of air pollution control actions significantly reduced PM2.5 pollution in China. Control actions included changes in activity levels, structural adjustment (SA) policy, energy and material saving (EMS) policy, and end-of-pipe (EOP) control in several sources, which have not been systematically studied in previous studies. Here, we integrate an emission inventory, a chemical transport model, a health impact assessment model, and a scenario analysis to quantify the contribution of each control action across a range of major emission sources to the changes in PM2.5 concentrations and associated mortality in China from 2013 to 2019. Assuming equal toxicity of PM2.5 from all the sources, we estimate that PM2.5-related mortality decreased from 2.52 (95 % confidence interval, 2.13-2.88) to 1.94 (1.62-2.24) million deaths. Anthropogenic emission reductions and declining baseline incidence rates significantly contributed to health benefits, but population aging partially offset their impact. Among the major sources, controls on power plants and industrial boilers were responsible for the highest reduction in PM2.5-related mortality (∼80 %), followed by industrial processes (∼40 %), residential combustion (∼40 %), and transportation (∼30 %). However, considering the potentially higher relative risks of power plant PM2.5, the adverse effects avoided by their control could be ∼2.4 times the current estimation. Our power plant sensitivity analyses indicate that future estimates of source-specific PM2.5 health effects should incorporate variations in individual source PM2.5 effect coefficients when available. As for the control actions, while activity levels increased for most sources, SA policy significantly reduced the emissions in residential combustion and industrial boilers, and EOP control dominated the contribution in health benefits in most sources except residential combustion. Considering the emission reduction potential by source and control actions in 2019, our results suggest that promoting clean energy in residential combustion and enforcing more stringent EOP control in the iron and steel industry should be prioritized in the future.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Environmental Monitoring/methods , China
2.
Nat Food ; 5(1): 72-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177223

ABSTRACT

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Infant, Newborn , Humans , Mercury/metabolism , Oryza/metabolism , Food Chain , Methylmercury Compounds/metabolism , Demethylation
3.
Sci Total Environ ; 914: 170033, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38220000

ABSTRACT

Organic aerosol (OA) serves as a crucial component of fine particulate matter. However, the response of OA to changes in anthropogenic emissions remains unclear due to its complexity. The XXIV Olympic Winter Games (OWG) provided real atmospheric experimental conditions on studying the response of OA to substantial emission reductions in winter. Here, we explored the sources and variations of OA based on the observation of aerosol mass spectrometer (AMS) combined with positive matrix factorization (PMF) analysis in urban Beijing during the 2022 Olympic Winter Games. The influences of meteorological conditions on OA concentrations were corrected by CO and verified by deweathered model. The CO-normalized primary OA (POA) concentrations from traffic, cooking, coal and biomass burning during the OWG decreased by 39.8 %, 23.2 % and 65.0 %, respectively. Measures controlling coal and biomass burning were most effective in reducing POA during the OWG. For the CO-normalized concentration of secondary OA (SOA), aqueous-phase related oxygenated OA decreased by 51.8 % due to the lower relative humidity and emission reduction in precursors, while the less oxidized­oxygenated OA even slightly increased as the enhanced atmospheric oxidation processes may partially offset the efficacy of emission control. Therefore, more targeted reduction of organic precursors shall be enhanced to lower atmospheric oxidation capacity and mitigate SOA pollution.

4.
Nat Commun ; 14(1): 6491, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838777

ABSTRACT

Protecting human health from fine particulate matter (PM) pollution is the ambitious goal of clean air actions, but current control strategies  largely ignore the role of source-specific PM toxicity. Here, we proposed health-oriented control strategies by integrating the unequal toxic potencies of the most polluting industrial PMs. Iron and steel industry (ISI)-emitted PM2.5 exhibit about one order of magnitude higher toxic potency than those of cement and power industries. Compared with the current mass-based control strategy (prioritizing implementation of ultralow emission standards in the power sector), the proposed health-oriented control strategy (priority control of the ISI sector) could generate 5.4 times higher reduction in population-weighted toxic potency-adjusted PM2.5 exposure among polluting industries in China. Furthermore, the marginal abatement cost per unit of toxic potency-adjusted mass of ISI-emitted PM2.5 is only a quarter of that of the other two sectors under ultralow emission scenarios. We highlight that a health-oriented air pollution control strategy is urgently required to achieve cost-effective reductions in particulate exposure risks.

5.
Environ Sci Technol ; 57(33): 12259-12269, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556313

ABSTRACT

Despite extensive research and technology to reduce the atmospheric emission of Pb from burning coal for power generation, minimal attention has been paid to Pb associated with coal ash disposal in the environment. This study investigates the isotopic signatures and output rates of Pb in fly ash disposal in China, India, and the United States. Pairwise comparison between feed coal and fly ash samples collected from coal-fired power plants from each country shows that the Pb isotope composition of fly ash largely resembles that of feed coal, and its isotopic distinction allows for tracing the release of Pb from coal fly ash into the environment. Between 2000 and 2020, approx. 236, 56, and 46 Gg Pb from fly ash have been disposed in China, India, and the U.S., respectively, posing a significant environmental burden. A Bayesian Pb isotope mixing model shows that during the past 40 to 70 years, coal fly ash has contributed significantly higher Pb (∼26%) than leaded gasoline (∼7%) to Pb accumulation in the sediments of five freshwater lakes in North Carolina, U.S.A. This implies that the release of disposed coal fly ash Pb at local and regional scales can outweigh that of other anthropogenic Pb sources.


Subject(s)
Coal Ash , Coal , United States , Coal/analysis , Bayes Theorem , Lead , Isotopes/analysis , China , Power Plants
6.
Environ Sci Technol ; 57(33): 12242-12250, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37551974

ABSTRACT

Accurately tracking carbon flows is crucial for preventing carbon leakage and allocating responsibility for reducing CO2eq emissions. In this study, we developed an ensemble model to effectively track carbon flows within China's power system. Our approach integrates coal quality tests, individual power plant datasets, a dynamic material-energy flow analysis model, and an extended version of an interconnected power grid model that incorporates transmission and distribution (T&D) losses. Our results not only provide accurate quantification of unit-based CO2eq emissions based on coal quality data but also enable the assessment of emissions attributed to T&D losses and emission shifts resulting from interprovincial coal and electricity trade. Remarkably, for CO2eq emissions from coal-fired units, the disparity between the guideline and our study can be as high as [-95%, 287%]. We identify Guangdong, Hebei, Jiangsu, and Zhejiang provinces as the major importers of both coal and electricity, responsible for transferring nearly half of their user-based emissions to coal and power bases. Significantly, T&D losses, often overlooked, contribute to 15-20% of provincial emissions at the user side. Our findings emphasize the necessity of up-to-date life cycle emissions and spatial carbon shifts in effectively allocating emission reduction responsibilities from the national level to provinces.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Carbon , Power Plants , China , Electricity , Coal/analysis , Carbon Dioxide/analysis
7.
Sci Total Environ ; 892: 164691, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37301400

ABSTRACT

Understanding the spatial and temporal variations of atmospheric mercury (Hg) in the marine boundary layer could advance our knowledge on ocean evasion of Hg. Here, we conducted continuous measurements of total gaseous mercury (TGM) in the marine boundary layer during a round-the-world cruise from August 2017 to May 2018. We observed the highest and lowest TGM concentrations in Southern Indian Ocean (1.29 ± 0.22 ng m-3) and Southern Atlantic Ocean (0.61 ± 0.28 ng m-3), respectively. During the daytime, enhanced TGM was observed with the diurnal amplitude difference reaching its maximum in the range of 0.30-0.37 ng m-3 in Southern Indian Ocean and Southern Ocean. The positive correlation between TGM (R2 = 0.68-0.92) and hourly solar radiation in each ocean suggested that the daytime enhanced TGM was likely driven by Hg photoreduction in seawater, after excluding the influence of other meteorological factors. The diurnal amplitude of TGM in the marine boundary layer might be impacted by the microbial productivity and the ratio of ultraviolet radiation. Our study highlights that ocean acts as a net TGM source during the daytime in the Southern Hemisphere and aqueous photoreduction process may play an important role in the biogeochemical cycling of Hg.


Subject(s)
Air Pollutants , Mercury , Mercury/analysis , Ultraviolet Rays , Environmental Monitoring , Seawater , Indian Ocean , Gases/analysis , Air Pollutants/analysis
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 548-560, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37078747

ABSTRACT

Age-related thymic involution is one of the significant reasons for induced immunity decline. Recent evidence has indicated that lncRNAs are widely involved in regulating organ development. However, the lncRNA expression profiles in mouse thymic involution have not been reported. In this study, we collect mouse thymus at the ages of 1 month, 3 months, and 6 months for sequencing to observe the lncRNA and gene expression profiles in the early stages of thymic involution. Through bioinformatics analysis, a triple regulatory network of lncRNA-miRNA-mRNA that contains 29 lncRNAs, 145 miRNAs and 12 mRNAs that may be related to thymic involution is identified. Among them, IGFBP5 can reduce the viability, inhibit proliferation and promote apoptosis of mouse medullary thymic epithelial cell line 1 (MTEC1) cells through the p53 signaling pathway. In addition, miR-193b-3p can alleviate MTEC1 cell apoptosis by targeting IGFBP5. Notably, lnc-5423.6 can act as a molecular sponge of miR-193b-3p to regulate the expression of IGFBP5. In summary, lnc-5423.6 enhances the expression of IGFBP5 by adsorption of miR-193b-3p, thereby promoting MTEC1 cell apoptosis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Mice , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Thymus Gland/metabolism , Transcriptome
9.
Environ Sci Technol ; 57(11): 4504-4512, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36877596

ABSTRACT

Boilers involve ∼60% of primary energy consumption in China and emit more air pollutants and CO2 than any other infrastructures. Here, we established a nationwide, facility-level emission data set considering over 185,000 active boilers in China by fusing multiple data sources and jointly using various technical means. The emission uncertainties and spatial allocations were significantly improved. We found that coal-fired power plant boilers were not the most emission-intensive boilers with regard to SO2, NOx, PM, and mercury but emitted the highest CO2. However, biomass- and municipal waste-fired combustion, regarded as zero-carbon technologies, emitted a large fraction of SO2, NOx, and PM. Future biomass or municipal waste mixing in coal-fired power plant boilers can make full use of the advantages of zero-carbon fuel and the pollution control devices of coal-fired power plants. We identified small-size boilers, medium-size boilers using circulating fluidized bed boilers, and large-size boilers located in China's coal mine bases as the main high emitters. Future focuses on high-emitter control can substantially mitigate the emissions of SO2 by 66%, NOx by 49%, PM by 90%, mercury by 51%, and CO2 by 46% at the most. Our study sheds light on other countries wishing to reduce their energy-related emissions and thus the related impacts on humans, ecosystems, and climates.


Subject(s)
Air Pollutants , Air Pollution , Mercury , Humans , Air Pollutants/analysis , Carbon Dioxide , Ecosystem , Coal/analysis , China , Mercury/analysis , Power Plants
10.
Environ Sci Technol ; 57(12): 4775-4783, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36926863

ABSTRACT

As the Third Pole of the world, the Tibetan Plateau (TP) is sensitive to anthropogenic influences. Biomass combustion is one of the most important anthropogenic sources of mercury (Hg) emissions in the TP. However, due to the lack of knowledge about Hg emission characteristics and activity levels in the plateau, atmospheric Hg emissions from biomass combustion in the TP are under large uncertainties. Here, based on pilot-scale experiments, we found that particle-bound mercury (PBM; mean of 83.1-87.7 ng/m3) occupied 17.93-49.31% of the total emitted Hg and the PBM δ202Hg values (average -1.65‰ to -0.77‰) were significantly higher than those of the corresponding feeding biomass. The Δ200Hg values of total gaseous mercury and PBM were more negative (-0.08‰ to -0.05‰) than other anthropogenic emissions, providing unique isotopic fingerprints for this sector. Together with the investigated local activity levels, Hg emissions from biomass combustion reached 402 ± 74 kg/a, which were dozens of times higher than previous estimates. The emissions were characterized by conspicuous spatial heterogeneity, concentrated in the northern and central TP. Specialized Hg emissions and the Hg isotope fingerprint of local biomass combustion can aid in evaluating the influence of this sector on the fragile ecosystems of the TP.


Subject(s)
Mercury , Mercury/analysis , Mercury Isotopes/analysis , Tibet , Ecosystem , Biomass , Environmental Monitoring
11.
Dev Comp Immunol ; 139: 104581, 2023 02.
Article in English | MEDLINE | ID: mdl-36283574

ABSTRACT

The thymus is a vital immune organ, but its function gradually declines with age. Circular RNAs (circRNAs) are related to the development of tissues and organs. In this study, bioinformatics analysis showed that 1329, 755, and 417 circRNAs were differentially expressed between the comparison groups of 6-month age (M6) and 20-embryo age (E20), 3-day post-hatch (P3), and 3-month age (M3) Magang geese, respectively. Among them, 167 circRNAs were differentially co-expressed between thymic development (E20, P3, and M3) and involution (M6). Functional analysis showed significant enrichment of phosphorylation and positive regulation of GTPase activity. Furthermore, pathway analysis has shown that glycerolipid metabolism and the Wnt signaling pathway are critical pathways in the thymic involution process. Finally, we constructed the competitive endogenous RNA (ceRNA) network. The results of this study suggest that circRNAs may be involved in the age-related thymic involution of the Magang goose.


Subject(s)
Geese , RNA, Circular , Animals , Computational Biology , Geese/genetics , RNA, Circular/genetics
12.
J Environ Sci (China) ; 123: 222-234, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521986

ABSTRACT

In order to comprehensively evaluate the environmental impact of multi-media mercury pollution under differentiated emission control strategies in China, a literature review and case studies were carried out. Increased human exposure to methylmercury was assessed through the dietary intake of residents in areas surrounding a typical coal-fired power plant and a zinc (Zn) smelter, located either on acid soil with paddy growth in southern China, or on alkaline soil with wheat growth in northern China. Combined with knowledge on speciated mercury in flue gas and the fate of mercury in the wastewater or solid waste of the typical emitters applying different air pollution control devices, a simplified model was developed by estimating the incremental daily intake of methylmercury from both local and global pollution. Results indicated that air pollution control for coal-fired power plants and Zn smelters can greatly reduce health risks from mercury pollution, mainly through a reduction in global methylmercury exposure, but could unfortunately induce local methylmercury exposure by transferring more mercury from flue gas to wastewater or solid waste, then contaminating surrounding soil, and thus increasing dietary intake via crops. Therefore, tightening air emission control is conducive to reducing the comprehensive health risk, while the environmental equity between local and global pollution control should be fully considered. Rice in the south tends to have higher bioconcentration factors than wheat in the north, implying the great importance of strengthening local pollution control in the south, especially for Zn smelters with higher contribution to local pollution.


Subject(s)
Mercury , Methylmercury Compounds , Humans , Mercury/analysis , Coal , Wastewater , Solid Waste , Power Plants , Soil , China , Environmental Monitoring
13.
Environ Sci Technol ; 56(22): 15347-15355, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36288504

ABSTRACT

As the largest emission source in the Pan-Third Pole region, residential solid fuel combustion gains increasing public concern regarding air pollution-associated health impacts. This study firstly developed emission inventories by combining energy statistics, fuel-mix survey, and detailed emission factors considering different fuel types, stove types, and altitudes, and we achieved full regional coverage and increased spatial resolution from 9 × 9 km to 1 km × 1 km. Total CO2, CO, PM2.5, SO2, and NOx emissions (coefficient of variation) were estimated to be 823 Mt (24%), 53 Mt (28%), 4525 kt (48%), 1388 kt (55%), and 1275 kt (46%) in 2020. India, Pakistan, and Bangladesh combined contributed 73, 57, 65, 67, and 69% of total CO2, CO, PM2.5, SO2, and NOx emissions, respectively, due to the large population. The Qinghai-Tibet Plateau had the second-highest emission intensity, mainly due to the high fuel consumption per capita. Unlike the emissions of the Pan-Third Pole in existing Asian inventories, dung cake combustion dominated total PM2.5, SO2, and NOx emissions rather than firewood combustion with proportions of 54, 70, and 67%, respectively. The effect of altitude on combustion efficiencies increased PM2.5 emissions by about 21% from the region. The method and results can provide technical guidance for emission inventory refinement in the Pan-Third Pole and other regions.


Subject(s)
Air Pollutants , Air Pollution , Household Articles , Air Pollutants/analysis , Particulate Matter/analysis , Carbon Dioxide , Air Pollution/analysis
14.
J Environ Sci (China) ; 119: 106-118, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35934455

ABSTRACT

The gaseous or particulate forms of divalent mercury (HgII) significantly impact the spatial distribution of atmospheric mercury concentration and deposition flux (FLX). In the new nested-grid GEOS-Chem model, we try to modify the HgII gas-particle partitioning relationship with synchronous and hourly observations at four sites in China. Observations of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and PM2.5 were used to derive an empirical gas-particle partitioning coefficient as a function of temperature (T) and organic aerosol (OA) concentrations under different relative humidity (RH). Results showed that with increasing RH, the dominant process of HgII gas-particle partitioning changed from physical adsorption to chemical desorption. And the dominant factor of HgII gas-particle partitioning changed from T to OA concentrations. We thus improved the simulated OA concentration field by introducing intermediate-volatility and semi-volatile organic compounds (I/SVOCs) emission inventory into the model framework and refining the volatile distributions of I/SVOCs according to new filed tests in the recent literatures. Finally, normalized mean biases (NMBs) of monthly gaseous element mercury (GEM), GOM, PBM, WFLX were reduced from -33%-29%, 95%-300%, 64%-261%, 117%-122% to -13%-0%, -20%-80%, -31%-50%, -17%-23%. The improved model explains 69%-98% of the observed atmospheric Hg decrease during 2013-2020 and can serve as a useful tool to evaluate the effectiveness of the Minamata Convention on Mercury.


Subject(s)
Air Pollutants , Mercury , Aerosols , Air Pollutants/analysis , Dust , Environmental Monitoring/methods , Gases , Mercury/analysis
15.
J Hazard Mater ; 430: 128403, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35739653

ABSTRACT

Mercury pollution has attracted worldwide attention due to its toxicity, bioaccumulation and persistence. Cement clinker production is the top emitter of atmospheric mercury in China and the emissions from raw mill systems account for about 85% of all emissions. However, the mercury emission characteristics and mechanisms as a function of time during an operation cycle are still unclear. This study aims to reveal the mercury emission characteristics and mechanisms in cement plants by comprehensively using offline and online field measurements, control experiments and heat transfer analysis. Research results indicated that an intermediate temperature (300-500 °C) desorption and the heterogeneous oxidation of mercury in the precalciner, the selective adsorption of oxidized gaseous mercury (Hg2+) to raw meal, and Hg2+ re-vaporization in the conditioning tower jointly caused an increase in the Hg2+ ratio (15.3%-83.6%) during the mill-off mode. In addition, mercury concentrations remained at approximately 6.5 µg/Nm3 during the mill-on mode while the values reached a peak of 1835.4 µg/Nm3 during the mill-off mode. Thus, atmospheric mercury emissions during the mill-off mode accounted for 35.0%- 71.7% of the emissions during the entire cycle, although the mill-off period only lasted for 5%- 17% of the whole cycle. Our results therefore suggest that supervisory monitoring of mercury in cement clinker production should specify the operating status of raw mills. Mercury control technologies targeting a relatively short period for the mill-off mode can substantially reduce mercury emissions from cement clinker production, and thus, the related impacts on ecosystems and human health.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , China , Ecosystem , Environmental Monitoring , Environmental Pollution , Humans , Mercury/analysis
16.
Funct Integr Genomics ; 22(5): 849-863, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35505120

ABSTRACT

Polysaccharides from Atractylodes macrocephala Koidz (PAMK) can promote the proliferation of thymocytes and improve the body's immunity. However, the effect of PAMK on thymic epithelial cells has not been reported. Studies have shown that miRNAs and lncRNAs are key factors in regulating cell proliferation. In this study, we found that PAMK could promote the proliferation of mouse medullary thymic epithelial cell line 1 (MTEC1) cells through CCK-8 and EdU experiments. To further explore its mechanism, we detected the effect of PAMK on the expression profiles of lncRNAs, miRNAs, and mRNAs in MTEC1 cells. The results showed that PAMK significantly affected the expression of 225 lncRNAs, 29 miRNAs, and 800 mRNAs. Functional analysis showed that these differentially expressed genes were significantly enriched in cell cycle, cell division, NF-kappaB signaling, apoptotic process, and MAPK signaling pathway. Finally, we used Cytoscape to visualize lncRNA-miRNA-mRNA(14 lncRNAs, 17 miRNAs, 171 mRNAs) networks based on ceRNA theory. These results suggest that lncRNAs and miRNAs may be involved in the effect of PAMK on the proliferation of MTEC1 cells, providing a new research direction for exploring the molecular mechanism of PAMK promoting the proliferation of thymic epithelial cells.


Subject(s)
Atractylodes , MicroRNAs , RNA, Long Noncoding , Animals , Atractylodes/genetics , Epithelial Cells , Gene Regulatory Networks , Mice , MicroRNAs/genetics , NF-kappa B/genetics , Polysaccharides/pharmacology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Sincalide/genetics
17.
Environ Sci Technol ; 56(12): 7707-7715, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35607915

ABSTRACT

Gaseous oxidized mercury (Hg2+) monitoring is one of the largest challenges in the mercury research field, where existing methods cannot simultaneously satisfy the measurement requirements of both accuracy and time precision, especially in high-particulate environments. Here, we verified that dual-stage cation exchange membrane (CEM) sampler is incapable of gaseous elemental mercury (Hg0) uptake even if particulate matter is trapped on CEM, whereas the Hg2+ capture efficiency of the sampler is more than 90%. We then developed a Cation Exchange Membrane-Coupled Speciated Atmospheric Mercury Monitoring System (CSAMS) by coupling the dual-stage CEM sampler with the commercial Tekran 2537/1130/1135 system and configuring a new sampling and analysis procedure, so as to improve the monitoring accuracy of Hg2+ and ensure the simultaneous measurement of Hg0, Hg2+, and Hgp in 2 h time resolution. We deployed the CSAMS in urban Beijing in September 2021 and observed an unprecedented elevated Hg2+ during the daytime with an average amplitude of 510 pg m-3. Using a zero-dimensional box model, the elevated Hg2+ production rate was attributed to high atmospheric oxidant concentrations, Hg0 heterogeneous and interfacial oxidation processes on the surface of atmospheric particles, or potential unknown oxidants.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Environmental Monitoring/methods , Gases , Mercury/analysis , Particulate Matter/analysis
18.
Genes (Basel) ; 13(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35456382

ABSTRACT

MicroRNAs (miRNAs) control the proliferation of thymic epithelial cells (TECs) for thymic involution. Previous studies have shown that expression levels of miR-152-3p were significantly increased in the thymus and TECs during the involution of the mouse thymus. However, the possible function and potential molecular mechanism of miR-152-3p remains unclear. This study identified that the overexpression of miR-152-3p can inhibit, while the inhibition of miR-152-3p can promote, the proliferation of murine medullary thymic epithelial cell line 1 (MTEC1) cells. Moreover, miR-152-3p expression was quantitatively analyzed to negatively regulate Smad2, and the Smad2 gene was found to be a direct target of miR-152-3p, using the luciferase reporter assay. Importantly, silencing Smad2 was found to block the G1 phase of cells and inhibit the cell cycle, which was consistent with the overexpression of miR-152-3p. Furthermore, co-transfection studies of siRNA-Smad2 (siSmad2) and the miR-152-3p mimic further established that miR-152-3p inhibited the proliferation of MTEC1 cells by targeting Smad2 and reducing the expression of Smad2. Taken together, this study proved miR-152-3p to be an important molecule that regulates the proliferation of TECs and therefore provides a new reference for delaying thymus involution and thymus regeneration.


Subject(s)
MicroRNAs , Animals , Cell Cycle , Cell Proliferation/genetics , Epithelial Cells/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Smad2 Protein
19.
Environ Sci Technol ; 56(4): 2163-2171, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35076214

ABSTRACT

Nonferrous metal smelting (NFMS) is one of the key sources of mercury (Hg) emissions to the air and cross-media Hg transfer in China. In this study, a "Hg removal compensation effect" between upstream and downstream air pollution control devices (APCDs) in NFMS was uncovered based on the investigation of field test data. The relationships between the Hg concentration in flue gas and the Hg removal efficiencies of typical APCDs were established, and an advanced probabilistic mass flow model regarding this effect was developed. Model comparison shows that the probabilistic essence of the advanced model prevents the underestimation of the deterministic model caused by using the geometric means of the Hg contents of metal concentrates, and the consideration of the removal compensation effect leads to more accurate estimation of the overall Hg removal efficiency of cascaded APCDs. The Hg emission abatement in the NFMS sector from 2010 to 2017 was evaluated to be 55.6 t, which was 13.5% higher than the estimate without considering the Hg removal compensation effect. The overall uncertainty of the improved model was reduced. This study provides a new methodology for more accurate evaluation of the effectiveness of the national implementation plan for the Minamata Convention on Mercury.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , China , Copper , Mercury/analysis , Metals , Zinc
20.
ACS Environ Au ; 2(4): 324-335, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-37101969

ABSTRACT

Rice grain consumption is a primary pathway of human mercury exposure. To trace the source of rice grain mercury in China, we developed a rice paddy mercury transport and transformation model with a grid resolution of 1 km × 1 km by using the unit cell mass conservation method. The simulated total mercury (THg) and methylmercury (MeHg) concentrations in Chinese rice grain ranged from 0.08 to 243.6 and 0.03 to 238.6 µg/kg, respectively, in 2017. Approximately, 81.3% of the national average rice grain THg concentration was due to atmospheric mercury deposition. However, soil heterogeneity, especially the variation in soil mercury, led to the wide rice grain THg distribution across grids. Approximately, 64.8% of the national average rice grain MeHg concentration was due to soil mercury. In situ methylation was the main pathway via which the rice grain MeHg concentration was increased. The coupled impact of high mercury input and methylation potential led to extremely high rice grain MeHg in partial grids among Guizhou province and junctions with surrounding provinces. The spatial variation in soil organic matter significantly impacted the methylation potential among grids, especially in Northeast China. Based on the high-resolution rice grain THg concentration, we identified 0.72% of grids as heavily polluted THg grids (rice grain THg > 20 µg/kg). These grids mainly corresponded to areas in which the human activities of nonferrous metal smelting, cement clinker production, and mercury and other metal mining were conducted. Thus, we recommended measures that are targeted at the control of heavy pollution of rice grain by THg according to the pollution sources. In addition, we observed a wide spatial variation range of MeHg to THg ratios not only in China but also in other regions of the world, which highlights the potential risk of rice intake.

SELECTION OF CITATIONS
SEARCH DETAIL
...