Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Mol Pharm ; 18(4): 1643-1655, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33759538

ABSTRACT

To better promote the application of polymeric mixed micelles (PMMs), a coarse-grained molecular dynamics simulation (CGMD) has been employed to investigate the factors controlling the spatial distribution within the PMMs and predict their drug-loading properties, meanwhile, combined with experimental methods to validate and examine it. In this study, the snapshots obtained from CGMD and the results of proton nuclear magnetic resonance (1H NMR) and transmission electron microscopy (TEM) provide new insights into the distribution principle that the spatial distribution depends on the hydrophobic compatibility of drugs with the regions within PMMs. Docetaxel (DTX) is located within the interior or near the core-corona interface of the HS15 hydrophobic core inside FS/PMMs (PMMs fabricated from a nonionic triblock copolymer (F127)) and a nonionic surfactant (HS15), and therefore, the system with a high HS15 ratio, such as system I, is more suitable for loading DTX. In contrast, the more water-soluble puerarin (PUE) is more likely to be solubilized in the "secondary hydrophobic area," mainly formed by the hydrophobic part of F127 within FS/PMMs. However, when the initial feeding concentration of the drug is increased or the FS mixing ratios are changed, an inappropriate distribution would occur and hence influence the drug-loading stability. Also, this impact was further elucidated by the calculated parameters (solvent-accessible surface area (SASA), the radius of gyration (Rg), and energy landscape), and the analysis of the drug leakage, concluding that inappropriate distribution of the drug would lower the stability of the drug in the PMMs. These results combined together provide new insights into the distribution principle that the spatial distribution of drugs within PMMs depends on the hydrophobic compatibility of drugs with the regions formed by micellar materials. Additionally, in vitro drug release yielded a consistent picture with the above conclusions and provides evidence that both the location of the drug within the systems and the stability of the drug-loading system have a great influence on the drug release behavior. Accordingly, this work demonstrates that we can tune the drug-loading stability and drug release behavior via the drug-PMM interaction and drug location study, and CGMD technology would be a step forward in the search for suitable drug-delivery PMMs.


Subject(s)
Docetaxel/pharmacokinetics , Drug Carriers/chemistry , Micelles , Polymers/chemistry , Docetaxel/administration & dosage , Docetaxel/chemistry , Drug Liberation , Drug Stability , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Models, Biological , Molecular Dynamics Simulation , Particle Size , Proton Magnetic Resonance Spectroscopy , Spatial Analysis
2.
Langmuir ; 36(8): 2082-2092, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32088962

ABSTRACT

The self-assembly of a nonionic triblock copolymer (F127) and a nonionic surfactant (HS15) has been investigated due to favorable changes in properties in their mixtures. The effect of the mixing ratio on the self-assembly process and on the structural stability of the mixtures was studied by coarse-grained molecular dynamic simulation (CGMD) and experimental measurements (transmission electron microscopy, dynamic light scattering measurement, drug loading stability analysis, and fluorescence spectroscopy measurement). The CGMD provided the information on self-assembly behavior. The microstructure and micellar stability are affected by different proportions of F127/HS15. Pure HS15 molecules (system I) can rapidly form stable aggregates driven by strong hydrophobic force, including two steps: the formation of seed clusters and the fusion of them. At low F127 ratio (system II), the self-assembly process is dynamic unstable, and a volatile "coil/cluster-like" aggregate is formed under the single "binding" effect. As the ratio of added F127 increase, such as system III, stable "lotus-seedpod-like" aggregates form under the double effects of "binding plus wrapping". Its dynamic equilibrium can be achieved rapidly. The experimental results approved the assumption of "different mixing ratio with different structural stability" and even different loading stability of F127/HS15 systems for drugs with different log P, such as PUE and DTX, which means different loading area for them in the micellar systems at different mixing ratios because of less hydrophobic microdomains with the increase of F127 molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...