Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 357: 120748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552508

ABSTRACT

Catalytic pyrolysis technology proves to be a highly effective approach for waste cooking oil management. However, high-pressure drops and easy deactivation of powder catalysts hinder the industrialization of this technology. In this study, a bifunctional SiC ball (ZSM-5/SiC ball structured) catalyst was prepared to produce monocyclic aromatics. Bifunctional SiC ball catalyst demonstrates notable microwave-responsive properties and remarkable catalytic efficacy. Results showed that the content of monocyclic aromatics under BFSB catalysis with microwave heating was the highest. Weight hourly space velocity is no longer one of the main factors affecting microwave-assisted catalytic pyrolysis under bifunctional SiC ball catalyst. Monocyclic aromatics content did not decrease significantly and was still higher than 86% when space velocity increased from 30 h-1 to 360 h-1. The highest space velocity could only be 180 h-1 under Powder ZSM-5, and the content of the monocyclic aromatics dropped rapidly to 67.68%. Furthermore, even after five operating cycles, the content of monocyclic aromatics with bifunctional SiC ball catalyst continues to surpass the initial content observed with Powder ZSM-5 at 500 °C and 180 h-1. Related characterizations revealed that coking is the primary cause of catalyst deactivation for both catalyst types; however, the bifunctional SiC ball catalyst exhibits a 29.1% lower occurrence of polyaromatic coke formation compared to Powder ZSM-5.


Subject(s)
Microwaves , Pyrolysis , Powders , Biomass , Catalysis , Hot Temperature , Biofuels
3.
Sci Total Environ ; 926: 171887, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522533

ABSTRACT

Spent bleaching clay, a solid waste generated during the refining process of vegetable oils, lacks an efficient treatment solution. In this study, spent bleaching clay was innovatively employed to fabricate ceramic foams. The thermal stability analysis, microstructure, and crystal phase composition of the ceramic foams were characterized by TG-DSC, SEM, and XRD. An investigation into the influence of Al2O3 content on the ceramic foams was conducted. Results showed that, as the Al2O3 content increased from 15 wt% to 30 wt%, there was a noticeable decrease in bulk density and linear shrinkage, accompanied by an increase in compressive strength. Additionally, the ceramic foams were used as catalyst supports, to synthesize ZSM-5@ceramic foam composite catalysts for pyrolysis of waste oil. The open pores of the ZSCF catalyst not only reduced diffusion path length but also facilitated the exposure of more acid sites, thereby increasing the utilization efficiency of ZSM-5 zeolite. This, in turn, engendered a significant enhancement in monocyclic aromatic hydrocarbons content from 39.15 % (ZSM-5 powder catalyst) to 78.96 %. Besides, a larger support pore size and a thicker ZSM-5 zeolite coating layer led to an increase in monocyclic aromatic hydrocarbons content. As the time on stream was extended to 56 min, the monocyclic aromatic hydrocarbon content obtained with the composite catalyst remained 12.41 % higher than that of the ZSM-5 powder catalyst. These findings validate the potential of the composite catalyst. In essence, this study advances the utilization of spent bleaching clay and introduces a novel concept for ceramic foam fabrication. Furthermore, it contributes to the scaling up of catalytic pyrolysis technology.

4.
Sci Total Environ ; 899: 165597, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37467986

ABSTRACT

The current high volume of plastic waste, but low recycling rate, has led to environmental pollution and wasted energy. Greenhouse gas CO2 can facilitate thermal cracking to dehydrogenate waste plastics, and has potential value for producing olefins. In this work, the pyrolysis properties of low-density polyethylene (LDPE) were studied by thermogravimetric analysis and Py-GC/MS. The effect of the pyrolysis atmosphere, using N2 or CO2, with various MCM-41 catalyst ratios on pyrolysis product distribution, were investigated. The experimental results show that the olefin selectivity under a N2 atmosphere was from 30.32 % to 44.66 % which increased as the MCM-41 catalyst was increased. Under a CO2 atmosphere, the olefin selectivity reached a maximum of 60.39 %. The Boudouard reaction was also enhanced by the introduction of CO2. The carbon content of the subdivided olefins showed that in CO2, the promotion of C5-C12 olefins was relatively weak when non-catalyzed or at low catalytic ratios, but increased significantly at higher MCM-41 catalyst ratios. With a ratio of LDPE: MCM-41 = 5:4, the CO2 atmosphere showed the greatest promotion of C5-C12 olefins over N2, with an increase of 14.66 % compared to N2, representing a 48.54 % yield of the liquid product. Producing C5-C12 olefins under these conditions maximized energy efficiency. These results show that catalytic pyrolysis of LDPE under a CO2 atmosphere has great potential to produce C5-C12 olefins, which can be used to produce high-value chemicals such as naphtha and gasoline. This opens new opportunities for the chemical recycling of plastic waste.

5.
Sci Total Environ ; 872: 162214, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36796688

ABSTRACT

Pyrolysis of nitrogen-containing biomass holds tremendous potential for producing varieties of high value-added products, alleviating energy depletion. Based on the research status about nitrogen-containing biomass pyrolysis, the effect of biomass feedstock composition on pyrolysis products is first introduced from the aspects of elemental analysis, proximate analysis, and biochemical composition. The properties of biomass with high and low nitrogen used in pyrolysis are briefly summarized. Then, with the pyrolysis of nitrogen-containing biomass as the core, biofuel characteristics, nitrogen migration during pyrolysis, the application prospects, unique advantages of nitrogen-doped carbon materials for catalysis, adsorption and energy storage are introduced, as well as their feasibility in producing nitrogen-containing chemicals (acetonitrile and nitrogen heterocyclic) are reviewed. The future outlook for the application of the pyrolysis of nitrogen-containing biomass, specifically, how to realize the denitrification and upgrading of bio-oil, performance improvement of nitrogen-doped carbon materials, as well as separation and purification of nitrogen-containing chemicals, are addressed.


Subject(s)
Nitrogen , Pyrolysis , Biomass , Biofuels , Catalysis , Hot Temperature
6.
Bioresour Technol ; 370: 128529, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574887

ABSTRACT

Lignocellulosic biomass is a rich source of fixed renewable carbon and a promising alternative to fossil sources. However, low effective hydrogen to carbon ratio limits its applications. This work studied the influence of oil-bath co-torrefaction of corncob and waste cooking oil for co-pyrolysis. It was compared with dry torrefaction and hydrothermal wet torrefaction firstly. Residual of oil-bath co-torrefaction were the highest of 97.01 %. Oil-bath co-torrefaction could maximize hydrogen atoms retention in corncob, which has a positive significance for deoxygenation during pyrolysis. Oil-bath co-torrefaction could also reduce the average activation energy required for corncob decomposition, while it was increased with dry torrefaction. Oil-bath co-torrefaction coupled with co-pyrolysis was more suitable for hydrocarbon-rich bio-oil production. Oil-bath co-torrefaction temperature had the greatest influence on bio-oil composition. High pressure promoted formation of the CC double bond and degradation of lignin, which further promoted the formation of monocyclic aromatics in bio-oil.


Subject(s)
Hot Temperature , Zea mays , Pyrolysis , Biofuels , Cooking , Biomass , Carbon , Hydrogen
7.
Int J Biol Macromol ; 221: 8-15, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36075149

ABSTRACT

Selenylation Astragalus polysaccharides (Se-APS) was fabricated by an optimized microwave-assisted method. Their physicochemical properties, antioxidant capacities and selenium (Se) release rate under gastrointestinal conditions were determined. Se-APS with the highest Se content (18.8 mg/g) was prepared in 0.4 % nitric acid, under the microwave conditions of 90 min and 80 °C. FTIR and XPS spectra indicated that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, and most of Se+4 was reduced to Se0. Meanwhile, the micromorphology of Se-APS became clusters, loose and porous, which decreased its hydrodynamic particle size and negative surface charges. Besides, Se-APS displayed strong scavenging capacities towards ABTS and superoxide anion free radicals than Na2SeO3, and showed higher Se release rate (12.52 ± 0.31 %) under intestinal fluid comparing with gastric fluid (3.14 ± 0.38 %) during 8 h in vitro digestion. The results provided efficient preparation method references for selenylation polysaccharides, and broaden the application fields of APS.


Subject(s)
Astragalus Plant , Selenium , Microwaves , Astragalus Plant/chemistry , Polysaccharides/chemistry , Selenium/chemistry , Antioxidants/chemistry
8.
Sci Total Environ ; 809: 152182, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34883177

ABSTRACT

It is promising to convert waste oil and plastics to renewable fuels and chemicals by microwave catalytic co-pyrolysis, enabling pollution reduction and resource recovery. The purpose of this study was to evaluate the effect of catalysts on the product selectivity of microwave-assisted co-pyrolysis of waste cooking oil and low-density polyethylene and optimize the pyrolysis process, including pyrolysis temperature, catalytic temperature, waste cooking oil to low-density polyethylene ratio, and catalyst to feedstocks ratio. The results indicated that catalysts had a great influence on the product distribution, and the yield of BTX (benzene, toluene, and xylenes), which increased in the following order: SAPO-34 < Hß < HY < HZSM-5. HZSM-5 was more active for the formation of light aromatic hydrocarbons as compared to others, where the concentrations of toluene, benzene and xylenes reached 252.59 mg/mL, 114.7 mg/mL and 132.91 mg/mL, respectively. The optimum pyrolysis temperature, catalytic temperature, waste cooking oil to low-density polyethylene ratio and catalyst to feedstocks ratio could be 550 °C, 450 °C, 1:1 and 1:2, respectively, to maximize the formation of BTX and inhibit the formation of polycyclic aromatic hydrocarbons.


Subject(s)
Hydrocarbons, Aromatic , Pyrolysis , Biofuels , Catalysis , Cooking , Hot Temperature , Hydrocarbons , Microwaves , Polyethylene
9.
Bioresour Technol ; 341: 125800, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34438288

ABSTRACT

A novel Silicon carbide (SiC) foam ceramic based ZSM-5/SiC nanowires microwave-responsive catalyst was developed to upgrade the pyrolysis volatiles in a microwave-assisted series system (both the pyrolysis and catalytic systems were heated by microwave). The growth of SiC nanowires was helpful for the ZSM-5 growth on the SiC foam ceramic. Because the specific surface area of SiC foam ceramic was improved. The dielectric properties of the composite catalyst were improved due to the growth of SiC nanowires. Bio-oil composition analysis showed that area percentage of hydrocarbons and aromatic hydrocarbons could reach 80.89% and 40.48% at catalytic temperature of 450 ℃and 500 ℃, respectively. The microwave-responsive composite catalyst had good aromatization performance in microwave-assisted series system due to high dielectric properties and specific surface area. The composite catalyst performed well after five-cycle regeneration, and the hydrocarbon content could still reach 76.40%, which is 80.89% for the original catalyst.


Subject(s)
Microwaves , Pyrolysis , Biofuels , Catalysis , Hot Temperature , Hydrocarbons , Plant Oils , Polyphenols , Glycine max
10.
Sci Total Environ ; 749: 142386, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370899

ABSTRACT

Increasing fossil fuel consumption and global warming has been driving the worldwide revolution towards renewable energy. Biomass is abundant and low-cost resource whereas it requires environmentally friendly and cost-effective conversion technique. Pyrolysis of biomass into valuable bio-oil has attracted much attention in the past decades due to its feasibility and huge commercial outlook. However, the complex chemical compositions and high water content in bio-oil greatly hinder the large-scale application and commercialization. Therefore, catalytic pyrolysis of biomass for selective production of specific chemicals will stand out as a unique pathway. This review aims to improve the understanding for the process by illustrating the chemistry of non-catalytic and catalytic pyrolysis of biomass at the temperatures ranging from 400 to 650 °C. The focus is to introduce recent progress about producing value-added hydrocarbons, phenols, anhydrosugars, and nitrogen-containing compounds from catalytic pyrolysis of biomass over zeolites, metal oxides, etc. via different reaction pathways including cracking, Diels-Alder/aromatization, ketonization/aldol condensation, and ammoniation. The potential challenges and future directions for this technique are discussed in deep.


Subject(s)
Biofuels , Pyrolysis , Biomass , Catalysis , Hot Temperature , Lignin
11.
Bioresour Technol ; 302: 122843, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32006926

ABSTRACT

The composite catalysts were synthesized with SiC powder and ZSM-5 and were characterized by Brunauer-Emmett-Teller, X-ray diffraction, thermogravimetric analysis, pyridine-infrared spectroscopy, and scanning electron microscopy. The catalysts showed a high heating rate and excellent catalytic performance for pyrolysis vapors, and the product fractional distribution and chemical compositions of bio-oil in a tandem system (microwave pyrolysis and microwave ex-situ catalytic reforming) was examined. Experimental results confirmed the quality of bio-oil produced by the microwave-induced catalytic reforming was better than that product through electric heating. Additionally, 36.94 wt% of bio-oil was obtained using the catalyst with 20%ZSM-5/SiC under the following conditions: feed-to-catalyst ratio, 2:1; pyrolysis temperature, 550 °C; and catalytic temperature, 350 °C. The selectivities of hydrocarbons reached up to 75.88%. After five cycles, the activity of the regenerated composite catalyst was retained at 95% of the original catalyst.


Subject(s)
Glycine max , Microwaves , Biofuels , Catalysis , Heating , Hot Temperature , Plant Oils , Polyphenols , Pyrolysis
12.
Bioresour Technol ; 299: 122611, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31874451

ABSTRACT

Microwave-assisted co-pyrolysis of low hydrogen-to-carbon and high hydrogen-to-carbon effective ratio materials with the aid of HZSM-5 and MCM-41 is a promising technique to improve the bio-oil quality. The low content of hydrocarbons and short life cycle of catalyst limit the application of pyrolysis technology in biomass energy conversion. The effects of catalytic temperature, and HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock ratios on the yield and composition of bio-oil were studied in this work. The quality of bio-oil during biomass pyrolysis can be improved by adjusting the operating conditions. The optimal catalytic temperature, and ratios of HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock were 400 °C, 1:1, 2:1, and 1:2, respectively. The addition of MCM-41 was beneficial in prolonging the life of HZSM-5 since the macromolecular compounds cracked when MCM-41 was added which restrain the generation of coke. The co-pyrolysis of soapstock with straw advanced the deoxygenation of oxygen-containing compounds especially phenol from straw during pyrolysis.


Subject(s)
Microwaves , Pyrolysis , Biofuels , Biomass , Catalysis , Hot Temperature , Plant Oils , Polyphenols , Silicon Dioxide
13.
Bioresour Technol ; 289: 121609, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31212171

ABSTRACT

Microwave-assisted catalytic fast co-pyrolysis (MACFP) of lignin and waste oil with SiC as microwave absorbent and hierarchical ZSM-5/MCM-41 as catalyst were implemented in a microwave-induced reactor. ZSM-5/MCM-41 is a kind of composite catalyst with MCM-41 as shell and ZSM as core. The effects of catalyst temperature, the ratio of feedstock-to-catalyst and the ratio of two reactants (lignin and waste oil) on product distribution and yield were studied. The study shows that catalytic co-pyrolysis is a complex reaction process, and many reaction conditions could affect the final reaction results. The optimum reaction conditions are as follows: catalytic temperature 400 °C, the feedstock-to-catalyst ratio of 10:1 and the ratio of lignin to waste oil of 2:1. Under this reaction condition, the conversion of feedstocks reached 76.00%, the proportion of aromatics was 50.31% and the selectivity of monocyclic aromatic hydrocarbons (MAHs) was 42.83%.


Subject(s)
Hydrocarbons, Aromatic , Lignin , Catalysis , Microwaves , Pyrolysis , Silicon Dioxide
14.
Waste Manag ; 88: 102-109, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31079622

ABSTRACT

Continuous fast microwave catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock was studied using HZSM-5 as catalyst. The effects of catalyst temperature, feedstock-to-catalyst ratio, and A. philoxeroides-to-peanut soapstock ratio on the yield and composition of bio-oil were studied. Experimental results showed that the optimum catalyst temperature was 400 °C. The catalyst increased the proportion of aromatics but reduced the bio-oil yield. The optimum feedstock-to-catalyst ratio was 2:1. A. philoxeroides presented a significant synergistic effect with peanut soapstock, which facilitated the production of aromatics in the bio-oil. The optimum A. philoxeroides-to-peanut soapstock ratio was 1:2.


Subject(s)
Arachis , Microwaves , Biofuels , Catalysis , Hot Temperature , Pyrolysis
15.
Bioresour Technol ; 279: 202-208, 2019 May.
Article in English | MEDLINE | ID: mdl-30735929

ABSTRACT

A ZSM-5/SiC composite catalyst was synthesized and characterized by Brunauer-Emmett-Teller analysis, X-ray diffraction, and scanning electron microscopy in this study. The composite catalyst had the characteristics of ZSM-5 and SiC, and the surface of SiC grew evenly with a layer of ZSM-5. The effect of the composite catalyst on the product distribution and chemical composition in a co-pyrolysis downdraft system was investigated. In a down system with a catalytic temperature of 450 °C, a feed-to-catalyst ratio of 2:1, and a soybean-soapstock-to-straw ratio of 1:1, the proportions of alkanes, olefins, aromatics, and phenoxy compounds were 6.82%, 4.5%, 73.56% and 11.11%, respectively. The composite catalyst combined the catalytic performance of ZSM-5 and SiC, increasing the proportion of aromatics and decreasing the proportion of oxygen-containing compound in the bio-oil. Moreover, the composite catalyst maintained its activity after reusing several times.


Subject(s)
Biomass , Silicon Compounds/chemistry , Zeolites/chemistry , Catalysis , Plant Oils/metabolism , Polyphenols/metabolism , Pyrolysis , Temperature , X-Ray Diffraction
16.
RSC Adv ; 9(34): 19729-19739, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519387

ABSTRACT

This study reports the synthesis of a SiC-MCM41 composite catalyst by a microwave-assisted hydrothermal process and the composite catalyst had the characteristics of MCM41 and SiC, and the surface of SiC grew evenly with a layer of MCM41 after characterization of the catalysts by various means (X-ray diffraction, Brunauer-Emmett-Teller, scanning electron microscopy). The catalyst was applied in the pyrolysis of waste oil to investigate how it influences the bio-oil component proportion compared with no catalyst, only SiC, only MCM41 catalysis and the catalytic effect was also investigated at different temperatures and different catalyst to feed ratios. In a downdraft system with a pyrolysis temperature of 550 °C, a catalyst to feed ratio of 1 : 2, and a catalytic temperature of 400 °C, 32.43% C5-C12 hydrocarbons and 41.10% mono-aromatics were obtained. The composite catalyst combined the catalytic effect of SiC and MCM41 because it increased the amount of C5-C12 hydrocarbons and decreased the amount of oxygen-containing compounds in bio-oil. After repeated uses, the composite catalyst still retained the catalytic properties.

17.
Bioresour Technol ; 269: 162-168, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30172179

ABSTRACT

In this study, a continuous fast microwave-assisted pyrolysis system was developed to produce bio-oil, gas, and biochar from rice straw and Camellia oleifera shell. The effects of different pyrolysis temperatures (400 °C, 500 °C, and 600 °C) and feed rates (rice straw: 25, 45, and 66 g/min; C. oleifera shell: 100, 200, and 400 g/min) on bio-oil production were investigated. Experimental results showed that the yields of bio-oil (31.86 wt%) and gas (54.49 wt%) produced by the microwave-assisted pyrolysis of rice straw increased with increasing temperature. By contrast, the yields of bio-oil (27.45 wt%) and biochar (35.47 wt%) produced by the pyrolysis of C. oleifera shell decreased with increasing temperature. The contents of phenols, aldehydes, and alcohols in bio-oil produced from the shell were higher than those in bio-oil derived from rice straw.


Subject(s)
Biofuels , Microwaves , Plant Oils , Polyphenols , Hot Temperature
18.
Bioresour Technol ; 265: 33-38, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29864735

ABSTRACT

Fast microwave-assisted co-pyrolysis of pretreated bamboo sawdust and soapstock was conducted. The pretreatment process was carried out under microwave irradiation. The effects of microwave irradiation temperature, irradiation time, and concentration of hydrochloric acid on product distribution from co-pyrolysis and the relative contents of the major components in bio-oil were investigated. A maximum bio-oil yield of 40.00 wt.% was obtained at 200 °C for 60 min with 0.5 M hydrochloric acid. As pretreatment temperature, reaction time and acid concentration increased, respectively, the relative contents of phenols, diesel fraction (C12 + aliphatics), and other oxygenates decreased. The gasoline fraction (including C5-C12 aliphatics and aromatics) ranged from 55.77% to 73.30% under various pretreatment conditions. Therefore, excessive reaction time and concentration of acid are not beneficial to upgrading bio-oil.


Subject(s)
Biofuels , Microwaves , Wood , Hot Temperature , Phenols , Temperature
19.
Bioresour Technol ; 261: 306-312, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29677658

ABSTRACT

Fast microwave-assisted catalytic co-pyrolysis of Chromolaena odorata (C. odorata) and soybean soapstock with HZSM-5 as an ex-situ catalyst was investigated. Effects of catalytic temperature, feedstock: catalyst ratio and C. odorata: soybean soapstock ratio on the yield and composition of the bio-oil were discussed. Results showed that catalytic temperature greatly influenced the bio-oil yield. Co-pyrolysis of C. odorata and soybean soapstock improved the bio-oil yield, and the maximum bio-oil yield of 55.14% was obtained at 250 °C. However, the addition of HZSM-5 decreased bio-oil yield but improved the quality of bio-oil. Moreover, the proportion of oxygen-containing compounds decreased dramatically with the addition of soybean soapstock. The C. odorata: soybean soapstock ratio of 1:2 and feedstock: catalyst ratio of 2:1 were the optimal condition to upgrade the bio-oil. In addition, the resulted biochar contained various essential elements and could be used as soil repair agent.


Subject(s)
Biofuels , Chromolaena , Glycine max , Microwaves , Catalysis
20.
Bioresour Technol ; 258: 98-104, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29524692

ABSTRACT

The co-pyrolysis of pretreated lignin and soapstock was carried out to upgrade vapors under microwave irradiation. Results showed that the yield of 29.92-42.21 wt% of upgraded liquid oil was achieved under varied pretreatment conditions. Char yield decreased from 32.44 wt% for untreated control to 24.35 wt% for the 150 °C pretreated samples. The increased temperature, irradiation time and acid concentration were conducive to decrease the relative contents of phenols and oxygenates in liquid oils. The main components of the liquid oil were gasoline fraction (mono-aromatics and C5-C12 aliphatics), which ranged from 57.38 to 71.98% under various pretreatment conditions. Meanwhile, the diesel fraction (C12+ aliphatics) ranged from 13.16 to 22.62% from co-pyrolysis of pretreated lignin and soapstock, comparing with 10.18% of C12+ aliphatics from co-pyrolysis of non-pretreated lignin and soapstock. A possible mechanism was proposed for co-pyrolysis of pretreated lignin and soapstock for upgraded liquid oils.


Subject(s)
Biofuels , Lignin , Microwaves , Oils , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...