Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893907

ABSTRACT

Weaning is an important period that affects the performance of piglets. However, the regulation of dietary amino acid levels is considered to be an effective way to alleviate the weaning stress of piglets. N-carbamylglutamate (NCG) plays an important role in improving the growth performance and antioxidant capacity of animals. A total of 36 weaned piglets were randomly assigned to two treatment groups, a control group (CON) and a 500 mg/kg NCG group (NCG), and the experiment lasted for 28 days. The results show that the NCG treatment group showed an increased 0-28 days average weight gain and average daily feed intake, and also increased contents of GLU and HDL, and lower SUN in serum, and an upregulation of the expression of the amino acid transporters SNAT2, EAAC1, SLC3A1, and SLC3A2 mRNA in the jejunum (p < 0.05), as well as an increased villus length and VH:CD ratio, and claudin-1, occludin, and ZO-1 mRNA expression in the jejunum (p < 0.05). The NCG treatment group showed an increased content of GSH-Px in serum and T-AOC and SOD in the jejunum, and a lower content of MDA (p < 0.05); and the upregulation of the mRNA expression related to antioxidant enzymes (CAT, SOD1, Gpx4, GCLC, GCLM and Nrf2, AhR, CYP1A1) in the jejunal mucosa (p < 0.05). In addition, compared with the control group, the NCG treatment group saw an upregulation in the mRNA expression of IL-10 and a decrease in the expression of IL-1ß and IL-4 in the jejunal mucosa (p < 0.05). In summary, the results of this study suggest that NCG improved growth performance and jejunal morphology, improved the jejunal transport of amino acids related to the ornithine cycle, and improved the antioxidant capacity in weaned pigs.

2.
Biol Trace Elem Res ; 201(11): 5368-5378, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36746883

ABSTRACT

The purpose of this research was to explore the effect of selenium on mercury-mediated apoptosis of follicular granulosa cells in laying hens. Moreover, the ATF6/CHOP pathway was investigated to explore the mechanism in this progress. Hg, Se, and 4-phenyl butyric acid were used alone or in combination to treat the cells. Our results showed that the nuclear in cells became condensate after Hg exposure, while Se addition significantly alleviated this change. Hg exposure significantly induced the apoptosis and the reduction of mitochondrial membrane potential in cells (P < 0.05). Nevertheless, co-treatment of Se significantly inhibited these effects (P < 0.05). Additionally, Hg exposure dramatically elevated the gene expressions of Bax/Bcl-2 (P < 0.05), caspase-3 (P < 0.05), caspase-9 (P < 0.05), protein kinase RNA-like endoplasmic reticulum kinase (P < 0.05), activating transcription factor 6 (P < 0.05), C/EBP homologous protein (CHOP; P < 0.05), inositol-requiring enzyme 1α (P < 0.05), tumor necrosis factor-associated factor 2 (P < 0.05), activating transcription factor 6 (ATF6; P < 0.05), and apoptosis signal-regulating kinase 1 (P < 0.05) in cells, whereas Se addition avoided these changes. The exposure to Hg considerably boosted the expression of ATF6 and CHOP protein (P < 0.05), while Se addition significantly alleviated the above-mentioned enhancements (P < 0.05). In summary, Hg exposure induced apoptosis, which was considerably reduced alleviated by Se addition, which was linked to the ATF6/CHOP pathway in follicular granulosa cells in laying hens.


Subject(s)
Selenium , Animals , Female , Selenium/pharmacology , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Chickens/metabolism , Apoptosis , Granulosa Cells , Endoplasmic Reticulum Stress , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/pharmacology
3.
Animals (Basel) ; 12(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36496939

ABSTRACT

The present experiment aimed to research the effects of glutamine (Gln) on the digestive and barrier function of the ruminal epithelium in Hu lambs fed a high-concentrate finishing diet containing some soybean meal and cottonseed meal. Thirty healthy 3-month-old male Hu lambs were randomly divided into three treatments. Lambs were fed a high-concentrate diet and supplemented with 0, 0.5, and 1% Gln on diet for 60 days. The experimental results show that the Gln treatment group had lower pepsin and cellulase enzyme activity, propionate acid concentration, and IL-6, TNF-α, claudin-1, and ZO-1 mRNA expression in the ruminal epithelium (p < 0.05); as well as increases in lipase enzyme activity, the ratio of propionic acid to acetic acid, the IL-10 content in the plasma, and the mRNA expression of IL-2 and IL-10 in the ruminal epithelium, in contrast to the CON (control group) treatment (p < 0.05). Taken together, the findings of this present study support the addition of Gln to improve digestive enzyme activity, the ruminal epithelium's barrier, and fermentation and immune function by supplying energy to the mononuclear cells, improving the ruminal epithelium's morphology and integrity, and mediating the mRNA expression of tight junction proteins (TJs) and cytokines.

4.
Poult Sci ; 101(12): 102190, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36252503

ABSTRACT

This study investigated the effect of nano-selenium (nano-Se) in protecting laying hens from mercury (Hg)-induced prehierarchical follicular atresia. Furthermore, the endoplasmic reticulum stress (ERS) was explored to reveal the molecular mechanism. In vivo, 720 Hyline-Brown laying hens were treated with Hg and nano-Se alone or in combination. In vitro, the prehierarchical follicles were treated with Hg, nano-Se and 4-phenyl butyric acid (4-PBA) alone or in combination (Control, 25 µM Hg group, 10 µM nano-Se group, 20 µM nano-Se group, 25 µM Hg + 10 µM nano-Se group, 25 µM Hg + 20 µM nano-Se group, 25 µM Hg + 4-PBA group, and 25 µM Hg + 20 µM nano-Se + 4-PBA group). The GCs were treated with Hg and nano-Se alone or in combination (Control, 15 µM Hg group, 6 µM nano-Se group, 12 µM nano-Se group, 15 µM Hg + 6 µM nano-Se group, 15 µM Hg + 12 µM nano-Se group). The results revealed that dietary Hg significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition prevented these reductions (P < 0.05). Hg exposure significantly induced the accumulation of Hg in PHFs (P < 0.05), prehierarchical follicular atresia (P < 0.05) and apoptosis in PHFs, whereas nano-Se addition significantly prevented these effects (P < 0.05). The levels of sex hormones (P < 0.05) were significantly decreased after Hg exposure in vivo and in vitro, while nano-Se addition prevented the reductions. Furthermore, the RNA-Seq results showed that the key factors of the ERS presented differential expression, including C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) in GCs. Hg exposure significantly increased the key gene expression of endoplasmic reticulum stress in GCs, whereas nano-Se addition prevented the induction of expression of these genes. In addition, the protein levels of PERK, inositol requiring protein 1α (IRE1α) and ATF6 were significantly increased, whereas nano-Se addition prevented the enhancements of protein expression in GCs. In conclusion, this study shows that Hg exposure can reduce induce prehierarchical follicular atresia, whereas nano-Se can prevent these effects. Our results also elucidate a key role of ERS in these protective effects of nano-Se in laying hens.


Subject(s)
Mercury , Selenium , Female , Animals , Selenium/pharmacology , Selenium/metabolism , Chickens/physiology , Endoribonucleases/metabolism , Follicular Atresia , Mercury/metabolism , Protein Serine-Threonine Kinases
5.
Animals (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36077889

ABSTRACT

The effects of glutamine (Gln) on immunity and intestinal barrier gene expression levels in broilers challenged with Salmonella Enteritidis were evaluated. A total of 400 1-day-old broilers were randomly assigned to four groups, 10 repetition treatments per group with 10 broiler chickens for a 21-day feeding trial. The groups were the normal control group (CON, no infected group, fed with a basal diet); the S. Enteritidis-infected control group (SCC, infected with 2.0 × 104 CFU/mL of S. Enteritidis, fed a basal diet); and the Gln 1 and 2 groups, who were challenged with S. Enteritidis and fed a basal diet plus Gln at 0.5% and 1.0%, respectively. The results show that S. Enteritidis had adverse effects on the average daily feed intake, average daily gain, and the feed conversion ratio of infected broilers compared with those of CON broilers on d 7 (p < 0.05); decreased serum immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) concentrations, and intestinal mucosa Bcl-2 mRNA expression levels (p < 0.05); increased the Lysozyme (LZM, only serum), NO, inducible NO synthase (iNOS) (except at 4 d), and total nitric oxide synthase (TNOS) (except at 4 d) activities in serum and the intestinal mucosa; and increased intestinal mucosa polymeric immunoglobulin receptor (pIgR) (except at 21 d), Avian beta-defensin 5 (AvBD5), AvBD14, Bax, and Bak mRNA expression levels during the experimental period (p < 0.05). Supplementation with Gln improved growth performance; increased serum IgA, IgG, and IgM concentrations and intestinal mucosa Bcl-2 mRNA expression levels (p < 0.05); decreased the LZM (only serum), NO, iNOS (except at 4 d), and TNOS (except at 4 d) activities in serum and the intestinal mucosa; and decreased intestinal mucosa pIgR (except at 21 d), AvBD5, AvBD14, Bax, and Bak mRNA expression levels during the experimental period (p < 0.05). These results suggest that Gln might lessen the inflammatory reaction of the small intestine and enlarge the small bowel mucosa immune and barrier function in broiler chickens challenged with S. Enteritidis.

6.
Animals (Basel) ; 12(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36009609

ABSTRACT

This study evaluated the effect of arginine (Arg) on ovarian antioxidant capability during the luteal phase in ewes. A total of 108 multiparous Hu sheep at two years of age were randomly allocated to three groups: a control group (CG), a restriction group (RG), and an Arg group (AG), with six replicates per group and six ewes per replicate. Our results showed that the end body weight was significantly decreased in the RG group (p < 0.05), while the Arg addition reversed this reduction. The estrous cycle days were significantly increased in the RG group (p < 0.05), while Arg addition reversed this time extension. Compared with the control group, restricting feeding could significantly enhance the number of small follicles (SF), total follicles (TF), large corpora lutea, and the SF/TF (p < 0.05), while Arg addition reduced the number of SF and TF. However, the large follicles/TF were significantly decreased (p < 0.05), while Arg addition reversed this reduction. In addition, nutrition restriction significantly increased the malondialdehyde (MDA) level (p < 0.05), while significantly decreased the glutathione/glutathione disulfide and the activities of superoxidative dismutase, catalase, and glutathione peroxidase in the ovaries (p < 0.05). However, Arg addition reversed this enhancement of the MDA level and the reductions in these antioxidant enzymes activities. In addition, positive relationships occurred between antioxidant enzyme activities and the enzyme mRNA expressions. Meanwhile, the nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression was positively connected with antioxidant mRNA expressions and negatively related to the Kelch-like ECH-associated protein 1 (Keap1) mRNA expression. The Nrf2 protein expression was negatively related to the Keap1 protein expression. In conclusion, nutrition restriction reduced the ovarian antioxidant capability in ewes, while this was significantly improved by Arg supplementation, which was associated with the Nrf2/Keap1 pathway.

7.
Biol Trace Elem Res ; 200(12): 5205-5217, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35094234

ABSTRACT

This study investigated that the effect of nano-selenium (nano-Se) addition preventing prehierarchical follicular atresia induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se in vitro. The results revealed that Hg could significantly reduce laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition partially reversed the reductions. Besides, Hg significantly induced the deposition of Hg in prehierarchical follicles (P < 0.05) and prehierarchical follicular atresia (P < 0.05), whereas nano-Se addition could alleviate these toxicities in vitro. In addition, Hg exposure could significantly reduce cell viability (P < 0.05) and induce pyknotic nucleus in prehierarchical granulosa cells, while nano-Se addition reversed these effects. The levels of follicle-stimulating hormone (P < 0.05), luteinizing hormone (P < 0.05), progesterone (P < 0.05), and estradiol (P < 0.05) were significantly decreased after Hg exposure in vitro. However, nano-Se addition reversed the decreases of sex hormone levels. Furthermore, Hg exposure significantly increased the gene expressions of CHOP (P < 0.05), PERK (P < 0.05), ATF4 (P < 0.05), ATF6 (P < 0.05), ASK1 (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), caspase-9 (P < 0.05), caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se addition reversed these increases of gene expressions in vitro. In summary, this study provides that Hg can induce prehierarchical follicular atresia, whereas nano-Se addition can ameliorate it, and elucidates an important role of ER stress in nano-Se alleviating prehierarchical follicular atresia induced by Hg in laying hens.


Subject(s)
Mercury , Selenium , Animals , Caspase 3/metabolism , Caspase 9/metabolism , Chickens/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Estradiol , Female , Follicle Stimulating Hormone/metabolism , Follicular Atresia , Luteinizing Hormone/metabolism , Mercury/metabolism , Progesterone/metabolism , Protein Serine-Threonine Kinases , Selenium/metabolism , Selenium/pharmacology , TNF Receptor-Associated Factor 2/metabolism , bcl-2-Associated X Protein/metabolism
8.
Biol Trace Elem Res ; 200(8): 3785-3797, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34642862

ABSTRACT

This study investigated the effects of dietary nanoselenium (nano-Se) supplementation protecting from renal oxidative damages induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se. A total of 576 40-week-old Hyline-White laying hens were randomly allocated to 4 groups with 6 pens per group and 24 hens per pen. The experimental groups were as follows: control (basal diet), control + 27.0 mg/kg Hg, control + 5.0 mg/kg nano-Se, and Hg27.0 + 5.0 mg/kg nano-Se. The results revealed that dietary Hg exposure significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se supplementation partially reversed the reductions. Besides, dietary Hg exposure could induce histopathology damages and apoptosis in kidney, whereas nano-Se addition could alleviate these toxicities effectively. After Hg exposure, the activities and gene expressions of superoxidative dismutase (SOD) (P < 0.05), catalase (CAT) (P < 0.01), glutathione reductase (GR) (P < 0.05) and glutathione peroxidase (GSH-Px) (P < 0.05), and glutathione (GSH) content (P < 0.05) were significantly decreased, while the malondialdehyde (MDA) level was significantly increased (P < 0.05) in kidney. However, nano-Se supplementation partially reversed the levels and gene expressions of these antioxidant biomarkers in kidney. Furthermore, dietary Hg exposure significantly increased the gene expressions of PERK (P < 0.05), ATF4 (P < 0.05), CHOP (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), ASK1 (P < 0.05), Caspase-9 (P < 0.05), Caspase-8 (P < 0.05), Caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se supplementation partially reversed these increases of gene expressions. In summary, this study provides evidence that dietary Hg exposure can induce renal oxidative damages, and elucidates an important role of ER stress pathway in nano-Se alleviating renal apoptosis in laying hens.


Subject(s)
Dietary Supplements , Kidney , Oxidative Stress , Selenium , Animals , Antioxidants/pharmacology , Chickens , Female , Glutathione/metabolism , Kidney/drug effects , Kidney/metabolism , Mercury/toxicity , Oxidative Stress/drug effects , Protective Agents , Selenium/pharmacology
9.
Poult Sci ; 100(2): 982-992, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518152

ABSTRACT

This study investigated the effects of dietary arsenic supplementation on laying performance, egg quality, hepatic and renal histopathology, and oxidative stress in the livers and kidneys of laying hens. Furthermore, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway was explored to reveal the molecular mechanism of the stress. Five hundred and twelve 40-week-old Hyline White laying hens were randomly allocated to 4 groups with 8 pens per group and 16 hens per pen. The doses of arsenic administered to the 4 groups were 0.95, 20.78, 40.67, and 60.25 mg/kg. The results revealed that dietary arsenic supplementation significantly reduced hen-day egg production (P < 0.05), average egg weight (P < 0.05), Haugh units (P < 0.05), albumen height (P < 0.05), and eggshell strength (P < 0.05). Dietary arsenic supplementation also induced the accumulation of arsenic and histopathological damages in the liver and kidney. In accordance, dietary arsenic supplementation significantly enhanced serum alanine aminotransferase (P < 0.05), aspartate aminotransferase (P < 0.05), blood urea nitrogen (P < 0.05), and uric acid (P < 0.05) levels. After arsenic exposure, the activities of superoxide dismutase (SOD) (P < 0.05), catalase (P < 0.01), glutathione reductase (P < 0.05), and glutathione peroxidase (P < 0.05), and glutathione content (P < 0.05) were significantly decreased, while the malondialdehyde level was significantly increased (P < 0.05) in the liver and kidney. Positive correlations occurred between antioxidant enzyme activities and antioxidant enzyme gene expressions in the liver and kidney, except for renal manganese superoxide dismutase gene expression and SOD activity. Additionally, hepatic and renal Nrf2 mRNA expression was positively correlated with antioxidant gene expressions and negatively correlated with Keap1 mRNA expression. In summary, dietary arsenic supplementation induced oxidative stress by suppressing the Nrf2-Keap1 pathway in the livers and kidneys of laying hens.


Subject(s)
Arsenic/administration & dosage , Chickens/metabolism , Kidney/drug effects , Liver/drug effects , NF-E2-Related Factor 2/drug effects , Oxidative Stress/drug effects , Animal Feed/analysis , Animals , Antioxidants/metabolism , Arsenic/toxicity , Diet/veterinary , Dietary Supplements , Eggs/standards , Female , Kelch-Like ECH-Associated Protein 1/drug effects , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oviposition/drug effects , Random Allocation
10.
Biol Trace Elem Res ; 199(7): 2707-2716, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33405082

ABSTRACT

This study evaluated the effect of epigallocatechin-3-gallate (EGCG) alleviating the reduction of antioxidant capacity induced by dietary vanadium (V) in the liver, kidney, and ovary of laying hens. Furthermore, Kelch-like ECH-associated protein 1(Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-small Maf proteins (sMaf) pathway was explored to reveal the molecular mechanism. A total of 768 40-week-old Hyline-Brown laying hens were randomly allocated to 4 groups with 8 pens per group and 24 hens per pen. The experimental groups were as follows: control (basal diet); V15, control + 15 mg/kg V; EGCG150, control + 150 mg/kg EGCG; V15 + EGCG150, V15 + 150 mg/kg EGCG. Our results revealed that dietary EGCG supplementation completely alleviated the V-induced reductions of hen-day egg production, average egg weight, Haugh unit, albumen height, eggshell strength, and eggshell thickness. Dietary EGCG supplementation completely prevented the V-induced reductions of serum follicle-stimulating hormone and luteinizing hormone levels. Besides, dietary EGCG supplementation reversed the V-induced increments of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr), and uric acid (UA). In addition, dietary EGCG supplementation partially alleviated the V-induced reductions of the enzyme activities and gene expressions of superoxidative dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSH-Px). Furthermore, dietary EGCG supplementation partially alleviated the V-induced reductions of Nrf2 and sMaf gene expressions, and the increments of Keap1 gene expression. In summary, EGCG partially alleviated V-induced reduction of antioxidant capacity through Keap1-Nrf2-sMaf pathway in the liver, kidney, and ovary of laying hens.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Animal Feed/analysis , Animals , Antioxidants/pharmacology , Catechin/analogs & derivatives , Chickens/metabolism , Diet , Dietary Supplements , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Liver/metabolism , NF-E2-Related Factor 2/metabolism , Ovary/metabolism , Vanadium/pharmacology
11.
Poult Sci ; 99(11): 5802-5813, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142498

ABSTRACT

Mercuric chloride (HgCl2) is a serious environmental toxicant. So far, the toxicity mechanism of HgCl2 in chicken embryonic kidney (CEK) cells is not still fully understood. In this study, the possible molecular mechanisms of HgCl2 on apoptosis of CEK cells were investigated. Results showed that the cell morphology changed, and cell viability was significantly decreased (P < 0.05) after HgCl2 exposure. Besides, apoptosis rate was significantly increased after HgCl2 exposure (P < 0.05). The gene and protein expressions of B-cell lymphoma-2 associate X/B-cell lymphoma-2 (P < 0.05), caspase-3 (P < 0.05), and caspase-9 (P < 0.05) were significantly enhanced by HgCl2 in CEK cells. We also found that intracellular reactive oxygen species level was significantly enhanced (P < 0.05), and the flux of calcium ion to mitochondria occurred after HgCl2 exposure. In terms of molecular mechanisms, the mRNA and protein expressions associated with endoplasmic reticulum (ER) stress were significantly increased after HgCl2 exposure (P < 0.05), including glucose regulated protein 78, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). However, pretreated with 1-µmol/L 4-phenylbutyrate (ER stress inhibitor) alleviated the apoptosis and downregulated PERK-ATF4-CHOP pathway in CEK cells. Taken together, upregulation of PERK-ATF4-CHOP pathway of ER stress induced by HgCl2 is associated with apoptosis in CEK cells.


Subject(s)
Activating Transcription Factor 4 , Chickens , Mercuric Chloride , Protein Kinase C , Up-Regulation , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Apoptosis/drug effects , Cell Line , Mercuric Chloride/toxicity , Protein Kinase C/genetics , Signal Transduction/drug effects , Up-Regulation/drug effects
12.
Ecotoxicol Environ Saf ; 138: 1-8, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27987418

ABSTRACT

Tributyltin (TBT) is a toxic compound released into aquatic ecosystems through antifouling paints. This study was designed to examine the effects of TBT on antioxidant ability and immune responses of zebrafish (Danio rerio). Three hundred sixty healthy zebrafish were randomly grouped into four groups and exposed to different doses of TBT (0, 1, 10 and 100ngL-1). At the end of 8 weeks, the fish were sampled, and antioxidant capability, immune parameters and immune-related genes were assessed. The results showed that with an increase in TBT dose, the concentration of malonaldehyde in the liver was significantly increased (p<0.05), whereas the activities of total superoxide dismutase, catalase and glutathione peroxidase were significantly decreased (p<0.05) compared to the control. The activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to those of the fish exposed to 0ngL-1 TBT (p<0.05). However, the expression of the HSP70, HSP90, tumor necrosis factor-α(TNF-α), interleukins (IL-1ß, IL-6), and nuclear factor-kappa B p65 (NF-κ B p65) genes were all enhanced with an increase in TBT dose. The results indicated that TBT induced oxidative stress and had immunotoxic effects on zebrafish.


Subject(s)
Disinfectants/toxicity , Immunity/drug effects , Oxidative Stress/drug effects , Trialkyltin Compounds/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Antioxidants/metabolism , Catalase/metabolism , Cytokines/metabolism , Glutathione Peroxidase/metabolism , Heat-Shock Proteins/metabolism , Liver/drug effects , Liver/metabolism , Malondialdehyde/metabolism , Muramidase/metabolism , Random Allocation , Superoxide Dismutase/metabolism , Trialkyltin Compounds/metabolism , Tumor Necrosis Factor-alpha/metabolism , Zebrafish/immunology , Zebrafish/metabolism
13.
Fish Shellfish Immunol ; 54: 639-47, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26965748

ABSTRACT

In the present study, the interleukin-6 gene (IL-6) cDNA in blunt snout bream (Megalobrama amblycephala) was identified and its expression profiles under ammonia stress and bacterial challenge were investigated. The IL-6 sequence consisted of 1045 bp, including a 696 bp ORF which translated into a 232 amino acid (AA) protein. The protein contained a putative signal peptide of 24 AA in length. IL-6 expression analysis showed that the it is differentially expressed in various tissues under normal conditions and the highest IL-6 level was observed in the intestine tissue, followed by the liver, and then in the gills. Under ammonia stress, the IL-6 mRNA level both in spleens and intestine increased significantly (P < 0.05), with the maximum levels attained at 6 h, 12 h (72, 10-fold, respectively). Thereafter, they all significantly decreased (P < 0.01) and returned to the basal value within 48 h. Whereas, in livers it slightly decreased at 3 h firstly (0.5-fold), and then significantly (P < 0.05) increased with the maximum level attained 12 h (3-fold). Further expression analysis showed that the mRNA level of IL-6 in spleens, intestine and livers of blunt snout bream all increased significantly (P < 0.05), with maximum values attained at 6 h, 3 h, 6 h (10, 6, 18-fold, respectively) after Aeromonas hydrophila (A. hydrophila) injection, and then decreased to the basal value within 24 h which suggested that IL-6 was involved in the immune response to A. hydrophila. The cloning and expression analysis of the IL-6 provide theoretical basis to further study the mechanism of anti-adverseness and expression characteristics under stress conditions in blunt snout bream.


Subject(s)
Cyprinidae/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Gene Expression Regulation/immunology , Gram-Negative Bacterial Infections/veterinary , Interleukin-6/genetics , Aeromonas hydrophila/physiology , Amino Acid Sequence , Ammonia/toxicity , Animals , Base Sequence , Cloning, Molecular , Cyprinidae/classification , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Gene Expression Profiling , Gram-Negative Bacterial Infections/immunology , Interleukin-6/chemistry , Interleukin-6/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment/veterinary , Water Pollutants, Chemical/toxicity
14.
Biol Trace Elem Res ; 155(2): 228-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23949793

ABSTRACT

The objective of this study was to compare the effects of natural clinoptilolite and modified clinoptilolite on growth performance and antioxidant capacity in broiler chicks. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly distributed into three treatments, each of which had eight replicates. Each replicate contains 10 chicks. Control (CON) group fed with the basal diets, natural clinoptilolite (NCLI) group fed basal diets with 2 % natural clinoptilolite, and modified clinoptilolite (MCLI) group fed basal diets with 2 % modified clinoptilolite for 42 days. The results showed that the 2 % supplementation of natural clinoptilolite and modified clinoptilolite had no adverse effect on growth performance of broilers at 42 days of age. Relative weights of organs were not influenced by dietary treatments at 21 and 42 days. The activity of total nitric oxide synthase was significantly (P < 0.05) decreased in MCLI group than CON group at 21 days of age. At 21 and 42 days, the activities of glutathione peroxidase, catalase, total superoxide dismutase, total antioxidant capacity (T-AOC) were significantly (P < 0.05) increased in NCLI and MCLI groups than the CON group while there was no difference in T-AOC between CON and NCLI groups. The malondialdehyde content was significantly (P < 0.05) decreased in NCLI and MCLI groups than the CON group. It was concluded that the addition of 2 % natural clinoptilolite and modified clinoptilolite to diet can improve antioxidant capacity in broilers, although their effects on growth performance was negligible.


Subject(s)
Antioxidants/metabolism , Chickens/growth & development , Chickens/metabolism , Zeolites/pharmacology , Animals , Diet , Intestine, Small/drug effects , Intestine, Small/metabolism , Zeolites/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...