Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119688, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064990

ABSTRACT

The field practices, including irrigation and fertilization, strongly affect greenhouse gas emissions and soil nutrient cycling from agriculture. Understanding the underlying mechanism of greenhouse gas emissions, soil nutrient cycling, and their impact factors (fungal diversity, network characteristics, soil pH, salt, and moisture) is essential for efficiently managing global greenhouse gas mitigation and agricultural production. By considering abundant and rare taxa, we determine the identities and relative importance of ecological processes that modulate the fungal communities and identify whether they are crucial contributors to soil nutrient cycling and greenhouse gas emissions. The research is based on a 4-year field fertigation experiment with low (300 kg/ha P2O5 with 150 kg/ha urea) and high (600 kg/ha P2O5 with 300 kg/ha urea) fertilization level and three irrigation levels, that is, low (200 mm), medium (300 mm), and high (400 mm). The α-diversity (richness and Shannon index) of fungal subcommunities was significantly higher under medium irrigation (300 mm) and low fertilization (300 kg/ha P2O5 with 150 kg/ha urea) than under other treatments. Intermediate irrigation with low fertilization treatment yielded the most significant higher multinutrient cycling index and the lowest CO2 and CH4 emissions. The null model indicated that abundant taxa are mainly regulated by stochastic processes (dispersal limitation), and rare taxa are mainly regulated by environmental selection, especially by soil salinity. The co-occurrence network of rare taxa explained the changes in the entire fungal network stability. The abundant taxa played vital roles in regulating soil nutrient status, owing to the stronger association between their network and multinutrient cycling index. Furthermore, we have confirmed that soil moisture and fungal network stability are crucial factors affecting greenhouse gas emissions. Together, these results provide a deep understanding of the mechanisms that reveal fungal community assembly and soil fungal-driven variations in nutrient status and network stability, link fungal network characteristics to ecosystem functions, and reveal the factors that influence greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Mycobiome , Soil , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Ecosystem , Nitrous Oxide/analysis , Agriculture/methods , Urea , Fertilization , Methane/analysis , Fertilizers/analysis
2.
ACS Appl Mater Interfaces ; 13(23): 26782-26789, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34077176

ABSTRACT

Technologies for rapid screening of multiple foodborne pathogens have been urgently needed because of the complex food matrix and high outbreaks of foodborne diseases. In this study, multicolor coding up-conversion nanoparticles (UCNPs) were synthesized and applied for rapid and simultaneous detection of five kinds of foodborne pathogens. The multicolor coding UCNPs were obtained through doping different concentrations of a sensitizer (Yb3+) on the shell of the synthesized NaYF4:Yb3+, Tm3+ (20%/2%)@NaYF4:Yb3+, and Er3+ (x %/2%) core/shell nanocrystals. All the UCNPs could emit red and green luminescence simultaneously once excited with near-infrared wavelength (980 nm), and the ratio of red and green (R/G ratio) emission light intensity of each kind of UCNPs varied depending on the Yb3+ doping concentration. In addition, the magnetic nanoparticles (MNPs) modified with the monoclonal antibodies (mAbs) against the target bacteria were used to capture and separate the bacteria, resulting in obtaining the MNP-bacterium complexes. Different UCNPs with multicolor coding acted as signal probes were also modified with the mAbs to react with the MNP-bacterium complexes to form the MNP-bacterium-UCNP sandwich complexes. After the sandwich complexes were excited with a wavelength of 980 nm, the obtained R/G ratios and the green photoluminescence intensity (PL intensity) could be used to distinguish and quantitatively detect foodborne pathogens, respectively. This proposed nanoplatform could detect five foodborne pathogens simultaneously within 2 h with good sensitivity and specificity, showing great potential for multiplex detection of other targets in the fields of medical diagnosis and food security.


Subject(s)
Antibodies, Monoclonal/immunology , Bacteria/pathogenicity , Foodborne Diseases/diagnosis , Luminescence , Magnetite Nanoparticles/chemistry , Bacteria/classification , Bacteria/immunology , Foodborne Diseases/microbiology , Luminescent Measurements
3.
RSC Adv ; 9(7): 3688-3692, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-35518085

ABSTRACT

Herein, the infrared-responsive photocatalyst NaYF4:Yb,Tm@ZnO has been successfully synthesized by combining semiconductor ZnO with an upconversion material, NaYF4:Yb,Tm. In this composite, NaYF4:Yb,Tm emits intense ultraviolet and blue upconversion luminescence upon excitation by a 980 nm laser and provides the necessary energy of ultraviolet light to ZnO. The photocatalytic activity of NaYF4:Yb,Tm@ZnO composites has been studied using methylene blue by irradiation with a 980 nm laser, and the results indicate that the NaYF4:Yb,Tm@ZnO composite is an advanced near-infrared-driven photocatalyst; this study presents a promising strategy to utilize the near-infrared-responsive upconversion materials for photocatalytic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...