Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Mol Med Rep ; 24(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-34212987

ABSTRACT

Subsequently to the publication of the above paper, the authors have realized that Fig. 2A in this paper contained an error. The image selected to represent the experiment showing the invasion ability of EJ cells in the epirubicine/LV­NC group of Fig. 2A was chosen mistakenly during the figure compilation process. A corrected version of Fig. 2 is shown on the next page. Note that this error did not affect either the results or the conclusions reported in this paper, and all the authors agree to this Corrigendum. The authors are grateful to the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [the original article was published in Molecular Medicine Reports 6: 1133­1139, 2012; DOI: 10.3892/mmr.2012.1017].

2.
Mol Med Rep ; 6(5): 1133-9, 2012 11.
Article in English | MEDLINE | ID: mdl-22895628

ABSTRACT

Clusterin (CLU) is a glycoprotein that is over-expressed in a number of malignant tumors and has been proven to correlate closely with the chemoresistance of several cancer cells to chemotherapeutic agents. However, the effect of CLU expression on the chemoresistance of bladder cancer to epirubicin remains unknown. In the present study, we aimed to elucidate the role of CLU in the chemoresistance of bladder cancer cells to epirubicin. Lentivirus-mediated RNA interference was applied to knock down CLU in EJ bladder cancer cells. The efficiency was examined by RT-PCR and western blot analysis. After stable CLU silencing, an EJ cell line was established and cells were treated with or without epirubicin. Cell viability, migration, invasiveness, clone formation and cell cycle progression were assessed by MTT assay, wound healing assay, Matrigel invasion assay, plate clone formation assay and flow cytometry, respectively. The results indicated that lentivirus-mediated RNA interference effectively silenced CLU at the RNA and protein levels. CLU knockdown increased the cytotoxicity of epirubicin to EJ bladder cancer cells. Combined treatment with lentivirus-mediated shRNA targeting CLU and epirubicin had maximum effects in bladder cancer cells on cell viability, migration, invasiveness and clone-forming ability. Furthermore, cell cycle analysis indicated that CLU knockdown reinforced the efficacy of epirubicin on G0/G1 cell cycle arrest. Taken together, our results suggest that CLU silencing enhances chemosensitivity of EJ bladder cancer cells to epirubicin. Lentivirus-mediated shRNA targeting CLU may be an alternative approach in the treatment of bladder cancer.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Clusterin/antagonists & inhibitors , Epirubicin/toxicity , Lentivirus/genetics , RNA Interference/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Clusterin/genetics , Clusterin/metabolism , Drug Resistance, Neoplasm , G1 Phase Cell Cycle Checkpoints/drug effects , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , RNA, Small Interfering/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(2): 394-8, 2008 Feb.
Article in Chinese | MEDLINE | ID: mdl-18479030

ABSTRACT

The optical properties and their differences of native and coagulated human benign prostatic hyperplasia (BPH) tissues were studied in the spectral range from 590 to 1 064 nm in vitro. The measurements were performed using a spectrophotometer with an integrating sphere attachment, and the absorption and scattering properties were assessed from these measurements using the inverse adding-doubling method. The results of measurement showed that the thermal coagulation of BPH tissues induced obviously the decrease in the absorption coefficients in the spectral range from 590 to 1 064 nm. The peaks in the absorption coefficients for native and coagulated BPH tissues were respectively 0.438 and 0.416 mm(-1) corresponding to the same wavelength of 990 nm, the maximum difference in the absorption coefficients of native and coagulated BPH tissues is 86.79% at 1 064 nm, and the minimum difference is 4.74% at 920 nm. The thermal coagulation of BPH tissues induced an increase in the reduced scattering coefficients in the spectral range from 600 to 1 064 nm obviously, and induced a decrease in the reduced scattering coefficients at 590 nm obviously. The peaks in the reduced scattering coefficients for native and coagulated BPH tissues were respectively 1.090 and 1. 449 mm(-1) corresponding to the same wavelength of 970 nm, and other peaks in the reduced scattering coefficients for native and coagulated BPH tissues were respectively 1.116 and 1.627 mm(-1) corresponding to the same wavelength of 1 050 nm, the maximum difference in the reduced scattering coefficients of native and coagulated BPH tissues is 47.73% at 1 064 nm, and the minimum difference is 4.86% at 600 nm.


Subject(s)
Prostatic Hyperplasia/pathology , Spectrophotometry/methods , Humans , Male , Temperature
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(1): 10-3, 2008 Jan.
Article in Chinese | MEDLINE | ID: mdl-18422108

ABSTRACT

The optical properties and their differences of human benign prostatic hyperplasia (BPH) tissues removed using transurethral plasma kinetic resection of the prostate (PKRP) and transurethral vaporization of the prostate (TUVP) at 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860 and 880 nm of Ti: Sapphire laser were studied in vitro. The measurements were performed using a double-integrating-sphere setup, and the absorption and scattering properties were assessed using the inverse adding-doubling method. The results of measurement showed that the absorption coefficients and reduced scattering coefficients of BPH tissues removed using PKRP and TURP obviously decreased with the increase in the wavelength for thirteen different laser wavelengths. The absorption coefficient and reduced scattering coefficient of BPH tissues removed using PKRP at a certain laser wavelength were obviously smaller than that of BPH tissues removed using TUVP at the same laser wavelength. The maximum absorption coefficient and maximum reduced scattering coefficient of BPH tissues removed using PKRP and TURP were respectively (0. 885 +/- 0. 022) and (0.955 +/- 0.024)mm(-1), and (1.564 +/- 0.039) and (1.658 +/- 0.042)mm(-1) at 640 nm, their differences were respectively 7.91% and 6.01%, and the minimum absorption coefficient and minimum reduced scattering coefficient of BPH tissues removed using PKRP and TURP were respectively (0.443 +/- 0.011) and (0.455 +/- 0.011) mm(-1), and (1.117 +/- 0.028) and (1.197 +/- 0.030)mm(-1) at 640 nm, their differences were respectively 2.71% and 9.13%. The maximum difference in the absorption coefficients of BPH tissues removed using PKRP and TURP is 8.95% at 660 nm, and the minimum difference is 1.75% at 860 nm. The maximum difference in the reduced scattering coefficients of BPH tissues removed using PKRP and TURP is 9.13% at 800 nm, and the minimum difference is 6.01% at 640 nm.


Subject(s)
Aluminum Oxide , Lasers, Solid-State , Prostatic Hyperplasia/pathology , Prostatic Hyperplasia/surgery , Scattering, Radiation , Titanium , Absorption , Humans , Male , Prostatic Hyperplasia/diagnosis
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(11): 2721-5, 2008 Nov.
Article in Chinese | MEDLINE | ID: mdl-19271527

ABSTRACT

A low-cost, fast, and noninvasive method for early diagnosis of malignant lesions of mucosa tissue based on diffuse reflectance spectra was applied in the study of the optical biopsy of superficial human bladder cancer. In the present paper, differential diagnosis of superficial human bladder cancer was studied using the diffuse reflectance spectral ratio (R540/R575) of the oxygenated hemoglobin absorption bands at 540 and 575 nm in vitro. Diffuse reflectance spectra for mucosa/submucosa tissues of normal bladder and superficial bladder cancer were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that there were three the diffuse reflectance spectral dips at 415, 542 and 577 nm respectively for mucosa/submucosa tissues of normal bladder and superficial bladder cancer in the spectral range from 400 to 600 nm. The mean diffuse reflectance spectral ratio (R540/R575) of normal bladder mucosa/submucosa tissue decreased slowly with time increase after surgical excision, and the mean diffuse reflectance spectral ratio (R540/R575) of superficial bladder cancer mucosa/ submucosa tissue also decreased slowly with time increasing after surgical excision. The mean diffuse reflectance spectral ratios (R540/R575) of normal bladder mucosa/submucosa tissue were 111%, 107%, 104% and 102% after 2, 3, 4 and 5 h after surgical excision respectively, and those of superficial bladder cancer mucosa/submucosa tissue were 98.4%, 95.5%, 93.1% and 91.6% after 2, 3, 4 and 5 h after surgical excision respectively. There were significant differences in mean diffuse reflectance spectral ratio (R540/R575) for mucosa/submucosa tissues between normal bladder and superficial bladder cancer after 2, 3, 4 and 5 h after surgical excision respectively (p < 0.05). Differences in mean diffuse reflectance spectral ratio (R540/R575) for mucosa/ submucosa tissues between normal bladder and superficial bladder cancer were 12.6%, 11.5%, 10.9% and 10.4% after 2, 3, 4 and 5 h after surgical excision respectively. It is obvious that pathological changes in bladder mucosa/submucosa tissues induced changes in the component and structure of the tissues, and especially quantitative changes in oxyhemoglobin and de-oxyhemoglobin of tissues obviously. Conclusion of the study provides a new method that can be applied to rapid, low-cost and noninvasive optical biopsy of superficial bladder cancer.


Subject(s)
Biomarkers, Tumor/analysis , Oxyhemoglobins/analysis , Spectrum Analysis , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/metabolism , Humans , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...