Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(5): 1896-1905, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35044412

ABSTRACT

Low-symmetry of ReS2 has not only in-plane but also out-of-plane anisotropic light scattering, which is complicated, yet interesting with intrinsic strong electron-phonon coupling. In such a case, the Raman tensor also gets sophisticated with nine non-zero elements, which is layer-dependent for different Raman modes. Herein, we systematically investigated the polarization pattern evolution of both in-plane and out-of-plane Raman modes of few-layer ReS2 by angle-resolved polarized Raman spectroscopy. We found that in-plane Raman modes with less layer-dependence could be used to determine the crystal orientation (Re-chain direction) due to the weak electron-phonon interaction between layers. However, the out-of-plane and mixed vibration Raman modes demonstrate much evident layer-dependence due to the obvious electron-phonon interaction between layers. As such, the polarization patterns for the out-of-plane vibration Raman modes are distorted with layers in not only petal types but also maximum Raman intensity directions. This distortion is mainly due to the phase difference between Raman elements, which are complex values due to the near bandgap excitation laser. The results reveal that deep insights into anisotropy in low-symmetry two-dimensional materials could afford not only rich physics but also potential polarized optoelectronic devices.

2.
J Phys Chem Lett ; 13(1): 352-361, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34985291

ABSTRACT

Strain engineering is an attractive method to induce and control anisotropy for polarized optoelectronic applications with two-dimensional (2D) materials. Herein, we have investigated the nonlinear optical coefficient dispersion relationship and the second-harmonic generation (SHG) pattern evolution under the uniaxial strains for graphene, WS2, GaSe, and In2Se3 monolayers. The uniaxial strain can break the in-plane symmetry of 2D materials, leading to both trade-off breaking of the nonlinear coefficient and new emergent nonlinear coefficients. In such a case, a classical sixfold ϕ-dependent SHG pattern is transformed into a distorted sixfold SHG pattern under the strain. Due to the lattice symmetry breaking and the uneven charge density distribution in strained 2D materials, the SHG patterns also depend on the excitation photon energy. The results could give a guide for the SHG pattern analysis in experiments, suggesting strain engineering on 2D materials for the tunable anisotropy in polarized and flexible nonlinear optical devices.

3.
ACS Appl Mater Interfaces ; 13(23): 27334-27342, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096715

ABSTRACT

Dispersion property and second harmonic generation (SHG) pattern of novel two-dimensional (2D) van der Waals heterostructures (vdWHs) is of great significance not only for the characterization of material symmetry but also for understanding nonlinear photophysical phenomena. Herein, we demonstrate the SHG response of 2D type-I (MoTe2/WSe2) and type-II (MoSe2/WSe2) band alignment of vdWHs. In the dispersion relation of the second-order nonlinear coefficient, the pronounced peaks of the d16 element for both vdWHs are mainly contributed by resonance in the interband transition processes, whereas other elements are derived from the intraband transition processes because of the highly efficient charge transfer from WSe2 to MoTe2 in type-I vdWHs and the ultrafast charge separation between WSe2 and MoSe2 in type-II vdWHs, respectively. Besides, more nonzero nonlinear coefficient elements can participate in a nonlinear response at the oblique incidence, to which special attention needs paid. The polarization angle α-dependent SHG patterns display a rotational fourfold symmetry, whereas the azimuthal angle ϕ-dependent SHG patterns show sixfold symmetry for both type-I and type-II vdWHs at any wavelength under normal incidence. Under oblique incidence, the α-dependent (ϕ-dependent) SHG patterns will reduce to twofold (threefold) symmetry for both vdWHs. The results highlight the potential to deterministically engineer novel nonlinear optical properties for tunable anisotropic applications of nonlinear optoelectronic devices based on vdWHs.

SELECTION OF CITATIONS
SEARCH DETAIL
...