Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 18: 1404929, 2024.
Article in English | MEDLINE | ID: mdl-38903773

ABSTRACT

Introduction: Mechanical sensitive channels expressed in mammalian retinas are effectors of elevated pressure stresses, but it is unclear how their activation affects visual function in pressure-related retinal disorders. Methods: This study investigated the role of the transient potential channel vanilloid TRPV4 in photoreceptors and rod bipolar cells (RBCs) with immunohistochemistry, confocal microscopy, electroretinography (ERG), and patch-clamp techniques. Results: TRPV4 immunoreactivity (IR) was found in the outer segments of photoreceptors, dendrites and somas of PKCα-positive RBCs and other BCs, plexiform layers, and retinal ganglion cells (RGCs) in wild-type mice. TRPV4-IR was largely diminished in the retinas of homozygous TRPV4 transgenic mice. Genetically suppressing TRPV4 expression moderately but significantly enhanced the amplitude of ERG a- and b-waves evoked by scotopic and mesopic lights (0.55 to 200 Rh*rod-1 s-1) and photopic lights (105-106 Rh*rod-1 s-1) compared to wild-type mice in fully dark-adapted conditions. The implicit time evoked by dim lights (0.55 to 200 Rh*rod-1 s-1) was significantly decreased for b-waves and elongated for a-waves in the transgenic mice. ERG b-wave evoked by dim lights is primarily mediated by RBCs, and under voltage-clamp conditions, the latency of the light-evoked cation current in RBCs of the transgenic mice was significantly shorter compared to wild-type mice. About 10% of the transgenic mice had one eye undeveloped, and the percentage was significantly higher than in wild-type mice. Conclusions: The data indicates that TRPV4 involves ocular development and is expressed and active in outer retinal neurons, and interventions of TRPV4 can variably affect visual signals in rods, cones, RBCs, and cone ON BCs.

2.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38423760

ABSTRACT

Photoreceptors are electrically coupled to one another, and the spatiotemporal properties of electrical synapses in a two-dimensional retinal network are still not well studied, because of the limitation of the single electrode or pair recording techniques which do not allow simultaneously measuring responses of multiple photoreceptors at various locations in the retina. A multiple electrode recording system is needed. In this study, we investigate the network properties of the two-dimensional rod coupled array of the salamander retina (both sexes were used) by using the newly available multiple patch electrode system that allows simultaneous recordings from up to eight cells and to determine the electrical connectivity among multiple rods. We found direct evidence that voltage signal spread in the rod-rod coupling network in the absence of I h (mediated by HCN channels) is passive and follows the linear cable equation. Under physiological conditions, I h shapes the network signal by progressively shortening the response time-to-peak of distant rods, compensating the time loss of signal traveling from distant rods to bipolar cell somas and facilitating synchronization of rod output signals. Under voltage-clamp conditions, current flow within the coupled rods follows Ohm's law, supporting the idea that nonlinear behaviors of the rod network are dependent on membrane voltage. Rod-rod coupling is largely symmetrical in the 2D array, and voltage-clamp blocking the next neighboring rod largely suppresses rod signal spread into the second neighboring rod, suggesting that indirect coupling pathways play a minor role in rod-rod coupling.


Subject(s)
Photoreceptor Cells , Retina , Animals , Photoreceptor Cells/physiology , Retina/physiology , Urodela/physiology
3.
Vision Res ; 205: 108187, 2023 04.
Article in English | MEDLINE | ID: mdl-36758452

ABSTRACT

By analyzing light-evoked spike responses, cation currents (ΔIC) and chloride currents (ΔICl) of over 100 morphologically-identified retinal ganglion cells (GCs) in dark-adapted mouse retina, we found there are at least 14 functionally- and morphologically-distinct types of RGCs. These cells can be divided into 5 groups based on their patterns of spike response to whole field light steps (SRWFLS), a GC identification scheme commonly used in studies with extracellular recording techniques. We also found that all GCs in the mouse retina express strychnine-sensitive glycine receptors, and receive light-elicited chloride current (ΔICl) accompanied by a conductance increase from narrow-field, glycinergic amacrine cells. As the dark membrane potential of RGC are near the chloride-equilibrium potential, mouse GCs' spike responses are mediated primarily by bipolar cells inputs, and modulated by "shunting inhibition" from narrow-field amacrine cells. Analysis of strychnine actions on light-evoked cation current ΔIC (bipolar cell inputs) in GCs suggests that narrow-field amacrine cells modulate GCs by sending ON-OFF crossover feedback signals to presynaptic bipolar cell axon terminals via sign-inverting glycinergic synapses, and the feedback signals are synergistic to the bipolar cell light responses. Therefore narrow-field amacrine cells enhance light-evoked bipolar cell inputs to GCs by presynaptic "synergistic addition", besides the abovementioned postsynaptic "shunting inhibition" in GCs.


Subject(s)
Amacrine Cells , Retinal Ganglion Cells , Animals , Mice , Retinal Ganglion Cells/physiology , Amacrine Cells/physiology , Retina/physiology , Strychnine , Chlorides , Cations
4.
J Neurosci ; 42(33): 6469-6482, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35831173

ABSTRACT

Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in layer 2/3 neurons of adult male and female primary visual cortex in the MECP2-duplication syndrome animal model of autism. Increased response reliability was due in part to decreased response amplitude, decreased fluctuations in endogenous activity, and an abnormal decoupling of visual-evoked activity from endogenous activity. Similar to what was observed neuronally, the optokinetic reflex occurred more reliably at low contrasts in mutant mice compared with controls. Retinal responses did not explain our observations. These data suggest that the circuit mechanisms for combining sensory-evoked and endogenous signal and noise processes may be altered in this form of syndromic autism.SIGNIFICANCE STATEMENT Atypical sensory processing is now thought to be a core feature of the autism spectrum. Influential theories have proposed that both increased and decreased neural response reliability within sensory systems could underlie altered sensory processing in autism. Here, we report evidence for abnormally increased reliability of visual-evoked responses in primary visual cortex of the animal model for MECP2-duplication syndrome, a high-penetrance single-gene cause of autism. Visual-evoked activity was abnormally decoupled from endogenous activity in mutant mice, suggesting in line with the influential "hypo-priors" theory of autism that sensory priors embedded in endogenous activity may have less influence on perception in autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Autistic Disorder/genetics , Disease Models, Animal , Evoked Potentials, Visual , Female , Male , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2/genetics , Mice , Primary Visual Cortex , Reproducibility of Results
5.
Front Cell Neurosci ; 15: 722533, 2021.
Article in English | MEDLINE | ID: mdl-34720878

ABSTRACT

A chemical synapse is either an action potential (AP) synapse or a graded potential (GP) synapse but not both. This study investigated how signals passed the glutamatergic synapse between the rod photoreceptor and its postsynaptic hyperpolarizing bipolar cells (HBCs) and light responses of retinal neurons with dual-cell and single-cell patch-clamp recording techniques. The results showed that scotopic lights evoked GPs in rods, whose depolarizing Phase 3 associated with the light offset also evoked APs of a duration of 241.8 ms and a slope of 4.5 mV/ms. The depolarization speed of Phase 3 (Speed) was 0.0001-0.0111 mV/ms and 0.103-0.469 mV/ms for rods and cones, respectively. On pairs of recorded rods and HBCs, only the depolarizing limbs of square waves applied to rods evoked clear currents in HBCs which reversed at -6.1 mV, indicating cation currents. We further used stimuli that simulated the rod light response to stimulate rods and recorded the rod-evoked excitatory current (rdEPSC) in HBCs. The normalized amplitude (R/Rmax), delay, and rising slope of rdEPSCs were differentially exponentially correlated with the Speed (all p < 0.001). For the Speed < 0.1 mV/ms, R/Rmax grew while the delay and duration reduced slowly; for the Speed between 0.1 and 0.4 mV/ms, R/Rmax grew fast while the delay and duration dramatically decreased; for the Speed > 0.4 mV/ms, R/Rmax reached the plateau, while the delay and duration approached the minimum, resembling digital signals. The rdEPSC peak was left-shifted and much faster than currents in rods. The scotopic-light-offset-associated major and minor cation currents in retinal ganglion cells (RGCs), the gigantic excitatory transient currents (GTECs) in HBCs, and APs and Phase 3 in rods showed comparable light-intensity-related locations. The data demonstrate that the rod-HBC synapse is a perfect synapse that can differentially decode and code analog and digital signals to process enormously varied rod and coupled-cone inputs.

6.
OBM Neurobiol ; 5(2)2021.
Article in English | MEDLINE | ID: mdl-34308265

ABSTRACT

We studied how GC death in glaucoma related to the intraocular pressure (IOP), eyeball volume (VS) and elasticity (volumetric KS and tensile ES), and eyeball volume-pressure relation. Glaucomatous GC loss was studied in DBA/2J (D2) mice with wild-type mice as controls. GCs were retrogradely identified and observed with a confocal microscope. The elasticity calculation was also done on published data from patients treated by a gas bubble injection in the vitreous cavity. The GC population in D2 mice (1.5- to 14-month-old) was negatively correlated with following factors: VS (p = 0.0003), age (p = 0.0026) and IOP (but p = 0.0966). As indicated by average values, adult D2 mice (≥6 months) suffered significant GC loss, low KS and ES, and universal expansion of VS with normal IOP. KS and ES in the patients were also lower upon prolonged eyeball expansion compared to acute expansion. Based on the results and presumptions of a closed and continuous eyeball space (thereby ΔVS ≈ ΔVW, ΔVW-the change in the aqueous humor amount), we deduced equations on the ocular volume-pressure relationship: ΔIOP = KS*ΔVW/VS or ΔIOP = (2/3)*[1/(1-ν)]*(H/R)*ES*ΔVW/VS (ν, Poisson's ratio taken as 0.5; R, the curvature radius; and H, the shell thickness). Under normal atmospheric pressure, IOP of 10~50 mmHg contributed only 1.2~6.6% of the pressure opposing the retina and eyeball shell. We conclude: 1) A disturbance of ocular volume-pressure homeostasis, mediated primarily by low KS and ES, expanded VS, and large ΔVW, is correlated with GC death in glaucoma and 2) D2 mice with GC loss and normal IOP may serve as animal models for human normal-tension glaucoma.

7.
Cells ; 10(6)2021 05 22.
Article in English | MEDLINE | ID: mdl-34067375

ABSTRACT

(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.


Subject(s)
Membrane Potentials/physiology , Photoreceptor Cells/physiology , Retina/physiology , Vision, Ocular/physiology , Animals , Calcium/metabolism , Calcium/pharmacology , Membrane Potentials/drug effects , Retina/drug effects , Retinal Neurons/drug effects , Retinal Neurons/physiology , Vertebrates/physiology , Vision, Ocular/drug effects
8.
Vision Res ; 186: 13-22, 2021 09.
Article in English | MEDLINE | ID: mdl-34004350

ABSTRACT

Cone photoreceptors are the first neurons along the visual pathway that exhibit center-surround antagonistic receptive fields, the basic building blocks for spatial information processing in the visual system. The surround responses in cones are mediated by the horizontal cells (HCs) via multiple feedback synaptic mechanisms. It has been controversial on which mechanisms are responsible for the surround-elicited depolarizing responses in cones (ΔVCone(s)), and whether the surround responses of various types of cones are mediated by the same HC feedback mechanisms. In this report, we studied ΔVCone(s)) of four types of cones in the salamander retina, and found that they are mediated by feedback synapses from A-type, B-type or A- and B-type HCs. ΔVCone(s) are observable in the presence of concomitant center light spots, and surround + center light stimuli of various intensity, size and wavelength differentially activate the feedback synapses from A- and B-type HCs to cones. We found that ΔVCone(s) of the L-cones are mediated by both A- and B-type HCs, those of the P- and S-cones by B-type HCs, and those of the A-cones by the A-type HCs. Moreover, our results suggest that B-type HCs mediate ΔVCone(s) through both GABAergic and GluT-ClC feedback synaptic mechanisms, and A-type HCs mediate ΔVCone(s) via the GluT-ClC feedback mechanism. Feedback synaptic mechanisms that increase calcium influx in cone synaptic terminals play important roles in mediating the antagonistic surround responses in the postsynaptic bipolar cells, but they may not generate enough current to depolarize the cones and significantly contribute to ΔVCone(s).


Subject(s)
Retinal Cone Photoreceptor Cells , Synapses , Feedback , Retina , Visual Pathways
9.
Invest Ophthalmol Vis Sci ; 61(12): 15, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33064129

ABSTRACT

Purpose: Functional adaptation to ambient light is a key characteristic of retinal ganglion cells (RGCs), but little is known about how adaptation is affected by factors that are harmful to RGC health. We explored adaptation-induced changes to RGC physiology when exposed to increased intraocular pressure (IOP), a major risk factor for glaucoma. Methods: Wild-type mice of both sexes were subjected to 2 weeks of IOP elevation using the bead model. Retinas were assessed using a multielectrode array to record RGC responses to checkerboard white noise stimulation under both scotopic and photopic light levels. This information was used to calculate a spike-triggered average (STA) for each RGC with which to compare between lighting levels. Results: Low but not high IOP elevation resulted in several distinct RGC functional changes: (1) diminished adaptation-dependent receptive field (RF) center-surround interactions; (2) increased likelihood of a scotopic STA; and (3) increased spontaneous firing rate. Center RF size change with lighting level varied among RGCs, and both the center and surround STA peak times were consistently increased under scotopic illumination, although none of these properties were impacted by IOP level. Conclusions: These findings provide novel evidence that RGCs exhibit reduced light-dependent adaptation and increased excitability when IOP is elevated to low but not high levels. These results may reveal functional changes that occur early in glaucoma, which can potentially be used to identify patients with glaucoma at earlier stages when intervention is most beneficial.


Subject(s)
Adaptation, Ocular/physiology , Intraocular Pressure/physiology , Light , Ocular Hypertension/physiopathology , Retinal Degeneration/physiopathology , Retinal Ganglion Cells/radiation effects , Animals , Color Vision/physiology , Contrast Sensitivity/physiology , Disease Models, Animal , Electrophysiology , Female , Male , Mice , Mice, Inbred C57BL , Night Vision/physiology , Photic Stimulation
10.
Hum Mol Genet ; 29(5): 705-715, 2020 03 27.
Article in English | MEDLINE | ID: mdl-31600777

ABSTRACT

Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been identified as an autosomal-dominant disorder characterized by a complex neurological phenotype, with high prevalence of intellectual disability and optic nerve atrophy/hypoplasia. The syndrome is caused by loss-of-function mutations in NR2F1, which encodes a highly conserved nuclear receptor that serves as a transcriptional regulator. Previous investigations to understand the protein's role in neurodevelopment have mostly used mouse models with constitutive and tissue-specific homozygous knockout of Nr2f1. In order to represent the human disease more accurately, which is caused by heterozygous NR2F1 mutations, we investigated a heterozygous knockout mouse model and found that this model recapitulates some of the neurological phenotypes of BBSOAS, including altered learning/memory, hearing defects, neonatal hypotonia and decreased hippocampal volume. The mice showed altered fear memory, and further electrophysiological investigation in hippocampal slices revealed significantly reduced long-term potentiation and long-term depression. These results suggest that a deficit or alteration in hippocampal synaptic plasticity may contribute to the intellectual disability frequently seen in BBSOAS. RNA-sequencing (RNA-Seq) analysis revealed significant differential gene expression in the adult Nr2f1+/- hippocampus, including the up-regulation of multiple matrix metalloproteases, which are known to be critical for the development and the plasticity of the nervous system. Taken together, our studies highlight the important role of Nr2f1 in neurodevelopment. The discovery of impaired hippocampal synaptic plasticity in the heterozygous mouse model sheds light on the pathophysiology of altered memory and cognitive function in BBSOAS.


Subject(s)
COUP Transcription Factor I/physiology , Depression/pathology , Hippocampus/pathology , Memory Disorders/pathology , Neuronal Plasticity , Optic Atrophies, Hereditary/pathology , Animals , Behavior, Animal , Depression/etiology , Depression/metabolism , Female , Hippocampus/metabolism , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Optic Atrophies, Hereditary/etiology , Optic Atrophies, Hereditary/metabolism
11.
Sci Rep ; 9(1): 14727, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31591458

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Cell Death Dis ; 10(5): 364, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31064977

ABSTRACT

The transient receptor potential vanilloid 4 (TRPV4) channel may be opened by mechanical stimuli to mediate Ca2+ and Na+ influxes, and it has been suggested to mediate glaucoma retinopathy. However, it has been mostly unclear how TRPV4 activities affect the function of primate retinal ganglion cells (RGCs). We studied RGCs and bipolar cells (BCs) in the peripheral retina of the old-world primate using whole-cell current-clamp and voltage-clamp recordings, immunomarkers and confocal microscopy. RGCs were distinguished from displaced amacrine cells (ACs) by the absence of GABA and glycine immunoreactivity and possession of an axon and a large soma in the RGC layer. Strong TRPV4 signal was concentrated in medium to large somas of RGCs, and some TRPV4 signal was found in BCs (including PKCα-positive rod BCs), as well as the end feet, soma and outer processes of Mȕller cells. TRPV4 immunoreactivity quantified by the pixel intensity histogram revealed a high-intensity component for the plexiform layers, a low-intensity component for the soma layers of ACs and Mȕller cells, and both components in the soma layers of RGCs and BCs. In large RGCs, TRPV4 agonists 4α-phorbol 12,13 didecanoate (4αPDD) and GSK1016790A reversibly enhanced the spontaneous firing and shortened the delay of voltage-gated Na+ (Nav) currents under current-clamp conditions, and under voltage-clamp conditions, 4αPDD largely reversibly increased the amplitude and frequency of spontaneous excitatory postsynaptic currents. In BCs, changes in the membrane tension induced by either applying pressure or releasing the pressure both activated a transient cation current, which reversed at ~ -10 mV and was enhanced by heating from 24 °C to 30 °C. The pressure for the half-maximal effect was ~18 mmHg. These data indicate that functional TRPV4 channels are variably expressed in primate RGCs and BCs, possibly contributing to pressure-related changes in RGCs in glaucoma.


Subject(s)
Retinal Bipolar Cells/metabolism , Retinal Ganglion Cells/metabolism , TRPV Cation Channels/metabolism , Animals , Leucine/analogs & derivatives , Leucine/pharmacology , Macaca mulatta , Papio cynocephalus , Phorbol Esters/pharmacology , Pressure , Retina/metabolism , Retinal Bipolar Cells/cytology , Retinal Ganglion Cells/cytology , Sulfonamides/pharmacology , Synaptic Potentials/drug effects , TRPV Cation Channels/agonists , Temperature
13.
J Neurosci ; 39(10): 1881-1891, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30622167

ABSTRACT

Elevation of intraocular pressure (IOP) causes retinal ganglion cell (RGC) dysfunction and death and is a major risk factor for glaucoma. We used a bead injection technique to increase IOP in mice of both genders by an average of ∼3 mmHg for 2 weeks. This level of IOP elevation was lower than that achieved in other studies, which allowed for the study of subtle IOP effects. We used multielectrode array recordings to determine the cellular responses of RGCs exposed to this mild degree of IOP elevation. We found that RGC photopic receptive field (RF) center size and whole-field RGC firing rates were unaffected by IOP elevation. In contrast, we found that the temporal properties of RGC photopic responses in the RF center were accelerated, particularly in ON sustained cells. We also detected a loss of antagonistic surround in several RGC subtypes. Finally, spontaneous firing rate, interspike interval variance, and contrast sensitivity were altered according to the magnitude of IOP exposure and also displayed an IOP-dependent effect. Together, these results suggest that individual RGC physiologic parameters have unique IOP-related functional thresholds that exist concurrently and change following IOP elevation according to specific patterns. Furthermore, even subtle IOP elevation can impart profound changes in RGC function, which in some cases may occur in an IOP-dependent manner. This system of overlapping functional thresholds likely underlies the complex effects of elevated IOP on the retina.SIGNIFICANCE STATEMENT Retinal ganglion cells (RGCs) are the obligate output neurons of the retina and are injured by elevated intraocular pressure (IOP) in diseases such as glaucoma. In this study, a subtle elevation of IOP in mice for 2 weeks revealed distinct IOP-related functional thresholds for specific RGC physiologic parameters and sometimes showed an IOP-dependent effect. These data suggest that overlapping IOP-related thresholds and response profiles exist simultaneously in RGCs and throughout the retina. These overlapping thresholds likely explain the range of RGC responses that occur following IOP elevation and highlight the wide capacity of neurons to respond in a diseased state.


Subject(s)
Action Potentials , Intraocular Pressure/physiology , Retinal Ganglion Cells/physiology , Vision, Ocular/physiology , Animals , Contrast Sensitivity/physiology , Female , Male , Mice, Inbred C57BL
14.
Autophagy ; 14(8): 1419-1434, 2018.
Article in English | MEDLINE | ID: mdl-29916295

ABSTRACT

The accumulation of undegraded molecular material leads to progressive neurodegeneration in a number of lysosomal storage disorders (LSDs) that are caused by functional deficiencies of lysosomal hydrolases. To determine whether inducing macroautophagy/autophagy via small-molecule therapy would be effective for neuropathic LSDs due to enzyme deficiency, we treated a mouse model of mucopolysaccharidosis IIIB (MPS IIIB), a storage disorder caused by deficiency of the enzyme NAGLU (alpha-N-acetylglucosaminidase [Sanfilippo disease IIIB]), with the autophagy-inducing compound trehalose. Treated naglu-/ - mice lived longer, displayed less hyperactivity and anxiety, retained their vision (and retinal photoreceptors), and showed reduced inflammation in the brain and retina. Treated mice also showed improved clearance of autophagic vacuoles in neuronal and glial cells, accompanied by activation of the TFEB transcriptional network that controls lysosomal biogenesis and autophagic flux. Therefore, small-molecule-induced autophagy enhancement can improve the neurological symptoms associated with a lysosomal enzyme deficiency and could provide a viable therapeutic approach to neuropathic LSDs. ABBREVIATIONS: ANOVA: analysis of variance; Atg7: autophagy related 7; AV: autophagic vacuoles; CD68: cd68 antigen; ERG: electroretinogram; ERT: enzyme replacement therapy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary acidic protein; GNAT2: guanine nucleotide binding protein, alpha transducing 2; HSCT: hematopoietic stem cell transplantation; INL: inner nuclear layer; LC3: microtubule-associated protein 1 light chain 3 alpha; MPS: mucopolysaccharidoses; NAGLU: alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB); ONL: outer nuclear layer; PBS: phosphate-buffered saline; PRKCA/PKCα: protein kinase C, alpha; S1BF: somatosensory cortex; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; VMP/VPL: ventral posterior nuclei of the thalamus.


Subject(s)
Acetylglucosaminidase/deficiency , Brain/pathology , Disease Progression , Inflammation/pathology , Retinal Degeneration/drug therapy , Retinal Degeneration/enzymology , Trehalose/therapeutic use , Acetylglucosaminidase/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Gene Regulatory Networks/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mucopolysaccharidosis III/enzymology , Mucopolysaccharidosis III/pathology , Retinal Bipolar Cells/drug effects , Retinal Bipolar Cells/metabolism , Retinal Rod Photoreceptor Cells/drug effects , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Survival Analysis , Transcriptional Activation/drug effects , Trehalose/pharmacology , Vacuoles/drug effects , Vacuoles/metabolism , Vacuoles/ultrastructure
15.
J Comp Neurol ; 526(12): 1896-1909, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29667170

ABSTRACT

Some mammalian rod bipolar cells (RBCs) can receive excitatory chemical synaptic inputs from both rods and cones (DBCR2 ), but anatomical evidence for mammalian cone-RBC contacts has been sparse. We examined anatomical cone-RBC contacts using neurobiotin (NB) to visualize individual mouse cones and standard immuno-markers to identify RBCs, cone pedicles and synapses in mouse and baboon retinas. Peanut agglutinin (PNA) stained the basal membrane of all cone pedicles, and mouse cones were positive for red/green (R/G)-opsin, whereas baboon cones were positive for calbindin D-28k. All synapses in the outer plexiform layer were labeled for synaptic vesicle protein 2 (SV2) and PSD (postsynaptic density)-95, and those that coincided with PNA resided closest to bipolar cell somas. Cone-RBC synaptic contacts were identified by: (a) RBC dendrites deeply invaginating into the center of cone pedicles (invaginating synapses), (b) RBC dendritic spines intruding into the surface of cone pedicles (superficial synapses), and (c) PKCα immunoreactivity coinciding with synaptic marker SV2, PSD-95, mGluR6, G protein beta 5 or PNA at cone pedicles. One RBC could form 0-1 invaginating and 1-3 superficial contacts with cones. 20.7% and 38.9% of mouse RBCs contacted cones in the peripheral and central retina (p < .05, n = 14 samples), respectively, while 34.4% (peripheral) and 48.5% (central) of cones contacted RBCs (p > .05). In baboon retinas (n = 4 samples), cone-RBC contacts involved 12.2% of RBCs (n = 416 cells) and 22.5% of cones (n = 225 cells). This suggests that rod and cone signals in the ON pathway are integrated in some RBCs before reaching AII amacrine cells.


Subject(s)
Retinal Bipolar Cells/cytology , Retinal Cone Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Synapses/ultrastructure , Animals , Female , Male , Mice , Mice, Inbred C57BL , Papio
16.
Sci Rep ; 8(1): 2856, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434244

ABSTRACT

Elevated intracranial pressure (ICP) can result in multiple neurologic sequelae including vision loss. Inducible models of ICP elevation are lacking in model organisms, which limits our understanding of the mechanism by which increased ICP impacts the visual system. We adapted a mouse model for the sustained elevation of ICP and tested the hypothesis that elevated ICP impacts the optic nerve and retinal ganglion cells (RGCs). ICP was elevated and maintained for 2 weeks, and resulted in multiple anatomic changes that are consistent with human disease including papilledema, loss of physiologic cupping, and engorgement of the optic nerve head. Elevated ICP caused a loss of RGC somas in the retina and RGC axons within the optic nerve, as well as a reduction in both RGC electrical function and contrast sensitivity. Elevated ICP also caused increased hypoxia-inducible factor (HIF)-1 alpha expression in the ganglion cell layer. These experiments confirm that sustained ICP elevation can be achieved in mice and causes phenotypes that preferentially impact RGCs and are similar to those seen in human disease. With this model, it is possible to model human diseases of elevated ICP such as Idiopathic Intracranial Hypertension and Spaceflight Associated Neuro-ocular Syndrome.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracranial Hypertension/complications , Optic Nerve/pathology , Retinal Ganglion Cells/pathology , Animals , Disease Models, Animal , Electroretinography , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intracranial Hypertension/diagnostic imaging , Intracranial Hypertension/metabolism , Mice , Microscopy, Electron , Optic Nerve/diagnostic imaging , Optic Nerve/metabolism , Phenotype , Retinal Ganglion Cells/metabolism , Tomography, Optical Coherence , Up-Regulation
17.
Int J Ophthalmol ; 10(9): 1361-1369, 2017.
Article in English | MEDLINE | ID: mdl-28944193

ABSTRACT

AIM: To investigate the retinal toxicity and pharmacokinetics of simvastatin intravitreally injected into mice. METHODS: Forty-eight 6-8-week-old C57BL/6J mice were used in this study. Simvastatin was intravitreally injected into the right eye of each mouse; the left eye was injected with vehicle and was used as a control. Bilateral dark-adapted electroretinography (ERG) was performed 1 and 7d following injection. Histology was examined using a combination of light, fluorescence and electron microscopy. High-performance liquid chromatography (HPLC) was used to determine the decay in the retinal simvastatin concentration. RESULTS: ERG revealed no significant changes in the simvastatin-injected eyes compared to control. Histologic studies showed normal retinal morphology in eyes injected with simvastatin up to a final vitreal concentration of 200 µmol/L. No significant changes in the number of photoreceptors, bipolar cells or ganglion cells were found. The retinal simvastatin concentration decayed exponentially, with a half-life of 1.92-2.41h. CONCLUSION: Intravitreal injection of up to 200 µmol/L simvastatin produced no signs of adverse effects in the mouse retina. Simvastatin reaches the retina shortly after intravitreal injectionand has a short half-life.

19.
Nat Commun ; 8: 14338, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165011

ABSTRACT

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.


Subject(s)
Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Trehalose/pharmacology , Animals , Astrocytes , Autophagy/physiology , Brain/cytology , Brain/drug effects , Brain/pathology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Disease Models, Animal , Fibroblasts , Gene Knockdown Techniques , HeLa Cells , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons , Neuroprotective Agents/therapeutic use , Phosphorylation , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Trehalose/therapeutic use
20.
Vision Res ; 131: 96-105, 2017 02.
Article in English | MEDLINE | ID: mdl-28087445

ABSTRACT

The remarkable dynamic range of vision is facilitated by adaptation of retinal sensitivity to ambient lighting conditions. An important mechanism of sensitivity adaptation is control of the spatial and temporal window over which light is integrated. The retina accomplishes this by switching between parallel synaptic pathways with differing kinetics and degrees of synaptic convergence. However, the relative shifts in spatial and temporal integration are not well understood - particularly in the context of the antagonistic spatial surround. Here, we resolve these issues by characterizing the adaptation-induced changes to spatiotemporal integration in the linear receptive field center and surround of mouse retinal ganglion cells. While most ganglion cells lose their antagonistic spatial surround under scotopic conditions, a strong surround is maintained in a subset. We then applied a novel technique that allowed us to analyze the receptive field as a triphasic temporal filter in the center and a biphasic filter in the surround. The temporal tuning of the surround was relatively maintained across adaptation conditions compared to the center, which greatly increased its temporal integration. Though all phases of the center's triphasic temporal response slowed, some shifted significantly less. Additionally, adaptation differentially shifted ON and OFF pathway temporal tuning, reducing their asymmetry under scotopic conditions. Finally, spatial integration was significantly increased by dark adaptation in some cells while it decreased it in others. These findings provide novel insight into how adaptation adjusts visual information processing by altering fundamental properties of ganglion cell receptive fields, such as center-surround antagonism and space-time integration.


Subject(s)
Adaptation, Ocular/physiology , Retinal Ganglion Cells/physiology , Visual Pathways/physiology , Animals , Dark Adaptation/physiology , Electrophysiological Phenomena/physiology , Mice , Mice, Inbred C57BL , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...