Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 9(1): 6568, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31024030

ABSTRACT

The 37 currently recognized Bemisia tabaci cryptic species are economically important species and contain both primary and secondary endosymbionts, but their diversity has never been mapped systematically across the group. To achieve this, PacBio sequencing of full-length bacterial 16S rRNA gene amplicons was carried out on 21 globally collected species in the B. tabaci complex, and two samples from B. afer were used here as outgroups. The microbial diversity was first explored across the major lineages of the whole group and 15 new putative bacterial sequences were observed. Extensive comparison of our results with previous endosymbiont diversity surveys which used PCR or multiplex 454 pyrosequencing platforms showed that the bacterial diversity was underestimated. To validate these new putative bacteria, one of them (Halomonas) was first confirmed to be present in MED B. tabaci using Hiseq2500 and FISH technologies. These results confirmed PacBio is a reliable and informative venue to reveal the bacterial diversity of insects. In addition, many new secondary endosymbiotic strains of Rickettsia and Arsenophonus were found, increasing the known diversity in these groups. For the previously described primary endosymbionts, one Portiera Operational Taxonomic Units (OTU) was shared by all B. tabaci species. The congruence of the B. tabaci-host and Portiera phylogenetic trees provides strong support for the hypothesis that primary endosymbionts co-speciated with their hosts. Likewise, a comparison of bacterial alpha diversities, Principal Coordinate Analysis, indistinct endosymbiotic communities harbored by different species and the co-divergence analyses suggest a lack of association between overall microbial diversity with cryptic species, further indicate that the secondary endosymbiont-mediated speciation is unlikely to have occurred in the B. tabaci species group.


Subject(s)
Hemiptera/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Rickettsia/classification , Rickettsia/physiology , Sequence Analysis, DNA , Symbiosis
3.
J Zhejiang Univ Sci B ; 17(12): 992-996, 2016.
Article in English | MEDLINE | ID: mdl-27921404

ABSTRACT

Agrobacterium-mediated transformation has been widely used in producing transgenic plants, and was recently used to generate "transgene-clean" targeted genomic modifications coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Although tremendous variation in morphological and agronomic traits, such as plant height, seed fertility, and grain size, was observed in transgenic plants, the underlying mechanisms are not yet well understood, and the types and frequency of genetic variation in transformed plants have not been fully disclosed. To reveal the genome-wide variation in transformed plants, we sequenced the genomes of five independent T0 rice plants using next-generation sequencing (NGS) techniques. Bioinformatics analyses followed by experimental validation revealed the following: (1) in addition to transfer-DNA (T-DNA) insertions, three transformed plants carried heritable plasmid backbone DNA of variable sizes (855-5216 bp) and in different configurations with the T-DNA insertions (linked or apart); (2) each transgenic plant contained an estimated 338-1774 independent genetic variations (single nucleotide variations (SNVs) or small insertion/deletions); and (3) 2-6 new Tos17 insertions were detected in each transformed plant, but no other transposable elements or bacterial genomic DNA.


Subject(s)
Agrobacterium/genetics , Oryza/genetics , Computational Biology , DNA Transposable Elements , Genetic Variation , High-Throughput Nucleotide Sequencing , Plants, Genetically Modified , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...