Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 11(12): 10710-4, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22408979

ABSTRACT

This work elucidates the electronic structure, electron field emission and magnetic anisotropic behaviors of single wall carbon nanotubes (SWCNTs) for the spin-electronics device application grown on the La0.66Sr0.33MnO3 (LSMO)/SrTiO3 (STO) substrate. Micro-Raman spectroscopy, X-ray absorption near-edge structure (XANES) and valence-band photoemission spectroscopy (VBPES) were used for the study of electronics structure. The field emission characteristics were studied from the electron field emission current density (J) versus applied electric field (E(A)) from which the turn-on electric field (E(TOE)) was evaluated. The magnetization behaviors are also presented by the M-H hysteresis loop and were obtained by applying the magnetic field in the parallel and perpendicular direction of the CNTs at 305 K and 5 K temperatures. A magnetic measurement shows that the coercivity of the CNTs/LSMO/STO is higher and has hig anisotropic-nature than the composite LSMO/STO that could be the good material for the future possible spin-electronics device applications.

2.
J Nanosci Nanotechnol ; 9(12): 6799-805, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19908682

ABSTRACT

This work elucidates the effects of high-temperature annealing on the microscopic and electronic structure of multiwalled carbon nanotubes (MWCNTs) using high-resolution transmission electron microscopy, micro-Raman spectroscopy, X-ray diffraction, X-ray absorption near-edge structure (XANES) and valence-band photoemission spectroscopy (VBPES), respectively. The field emission and magnetization behaviors are also presented. The results of annealing are as follows: (1) MWCNTs tend to align in the form of small fringes along their length, promote graphitization and be stable in air, (2) XANES indicates an enhancement in oxygen content on the sample, implying that it can be adopted for sensing and storing oxygen gas, (3) the electron field emission current density (J) is enhanced and the turn-on electric field (E(TOE)) reduced, suggesting potential use in field emission displays and as electron sources in microwave tube amplifiers and (4) as-grown MWCNTs with embedded iron nanoparticles exhibits significantly higher coercivity approximately 750 Oe than its bulk counterpart (Fe(bulk) approximately 0.9 Oe), suggesting its potential use as low-dimensional high-density magnetic recording media.

SELECTION OF CITATIONS
SEARCH DETAIL
...