Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Dis ; 13(10): 5731-5740, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34795922

ABSTRACT

BACKGROUND: Numerous studies have shown pulmonary artery enlargement when measured by chest computed tomography (CT) could predict a worse outcome in chronic obstructive pulmonary disease (COPD) patients. Herein, we studied the prognostic implication of main pulmonary artery diameter (MPAD) in Chinese COPD patients. METHODS: This is an observational case-control study. Patients with 90-day readmissions are case group and those without 90-day readmission are control group. The study comprised of 417 COPD patients who underwent chest CT in their initial admission due to acute exacerbation of COPD (AECOPD). We analyzed their clinical characteristics such as MPAD, arterial blood gas (ABG) results, other chest CT findings and comorbidities to identify the cause of readmission within 90 days. RESULTS: Median age of our study population is 75 years old, and 79.6% of them are male. The median MPAD is 2.8 cm and 80.6% were also diagnosed with community acquired pneumonia (CAP) in their first admission. The median MPAD in patients with 90-day readmission was 3.1 cm while patients without 90-day readmission had median MPAD of 2.8 cm. Through multivariate logistic regression analysis CAP (P=0.019, OR: 3.105, 95% CI: 1.203-8.019) and MPAD (P<0.001, OR: 2.898, 95% CI: 1.824-4.605) were statistically significant. In the second stage of analysis, subgroup of patients diagnosed with CAP and AECOPD (pAECOPD) were analyzed, MPAD remained statistically significant (P<0.001, OR: 3.490, 95% CI: 1.929-6.316) and receiver operative characteristic (ROC) curve for pAECOPD patients; area under the curve (AUC) was 0.704 (95% CI: 0.631-0.778) with a MPAD cut off value of 2.9 cm (sensitivity 72%, specificity 53%). CONCLUSIONS: Enlarged MPAD and pAECOPD in initial admission are independent risk factors for 90-day readmission. In our pAECOPD patient population, MPAD >2.9 cm are at increased risk of 90-day readmission.

2.
J Biomed Nanotechnol ; 17(6): 1217-1228, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34167634

ABSTRACT

Herein, we have designed and developed a heteromultivalent chitosan base α-Fe2O3/Gadofullerene (GdF) hybrid composite through a simple chemical precipitation method. Unlike other methods, the addition of external stabilizing agents to generate GdF nanoparticles (NPs) was not necessary herein. The prepared chitosan-α-Fe2O3/GdF hybrid nanocomposites were characterized using UV, FT-IR, XRD and morphological microscopic analyses. The results showed that α-Fe2O3 and GdF hybrid nanocomposites were successfully grown on the surface of chitosan. The FT-IR vibration peaks showed the formation of Fe2O3 NPs, and the vibration peak for Fe-O was 568 cm-1. The broad absorption peak observed in the range of 250-350 nm and a sharp absorption peak at 219 nm represents the UV absorption of the synthesized hybrid composites. XRD pattern showed sharp peaks of crystallinity and purity of α-Fe2O3 nanoparticles. Finally, the synthesized chitosan-α-Fe2O3/GdF hybrid composites were screened for their antibacterial resistance against the Escherichia coli, Pseudomonas aeruginosa, Bacilus subtilis, and Staphylococcus aereus. In addition, in vitro biocompatibility results exhibited that developed hybrid samples have provided high cell compatibility with fibroblast (L929) cell line. The in vivo bio inspired nanotherapeutics have the potential action to effective inhibition ability on antibiotic-resistant P. aeruginosa, which has been main factor of inducing pneumonia. In conclusion, we expect biomimicking systems combined with the effective antibacterial agent could be the suitable next generation therapeutic potential factors for prevention and treatment of antibiotic-resistant pneumonia.


Subject(s)
Chitosan , Pneumonia, Bacterial , Anti-Bacterial Agents/pharmacology , Ferric Compounds , Fullerenes , Humans , Spectroscopy, Fourier Transform Infrared
3.
Infect Genet Evol ; 86: 104582, 2020 12.
Article in English | MEDLINE | ID: mdl-33017689

ABSTRACT

PURPOSE: Methicillin-resistant Staphylococcus aureus (MRSA) carrying Panton-Valentine leukocidin, a pore-forming toxin, is a common cause of necrotizing pneumonia. However, the early pulmonary inflammatory response following PVL(+) MRSA infection is unknown. The purpose of this study was to use a murine model to determine the effect of PVL(+) MRSA on lung tissues and the expression of cytokines and JAK and STAT mRNA and protein. METHODS: Mice were randomly divided into 3 groups and intra-nasally treated with PBS (control group), recombinant PVL (rPVL group), and PVL(+) MRSA (PVL group). At 24 and 48 h after inoculation, bronchoalveolar lavage fluid (BALF) was tested for cytokine levels, and lung tissues were tested for JAK and STAT mRNA and protein expression, and examined after hematoxylin and eosin staining. RESULTS: Mice infected with the PVL(+) strain became ill, characterized by impaired mobility, hunched posture, ruffled fur, and labored breathing. Lung tissue exhibited tissue necrosis and hemorrhage. BALF levels of IL-8, TNF-α, IFN-γ, IL-12, sICAM-1, and sVCAM-1 were increased in the rPVL or PVL groups, while levels of IL-10 and IL-4 levels were similar among the groups. JAK1 and STAT1 mRNA expression and protein levels were increased in lung tissue from mice infected with PVL(+) MRSA and rPVL. CONCLUSIONS: PVL is a significant S. aureus virulence factor, and upregulates the expression of proinflammatory cytokines but does not affect the expression of anti-inflammatory cytokines. The effect of PVL may be due to JAK/STAT pathway activation. Blockade of the JAK/STAT pathway may decrease the severity of PVL(+) MRSA pneumonia.


Subject(s)
Bacterial Toxins/genetics , Exotoxins/genetics , Leukocidins/genetics , Pneumonia, Necrotizing/metabolism , Pneumonia, Necrotizing/microbiology , Signal Transduction , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Bacterial Toxins/metabolism , Cytokines/genetics , Cytokines/metabolism , Exotoxins/metabolism , Gene Expression Regulation , Host-Pathogen Interactions/immunology , Humans , Janus Kinases/metabolism , Leukocidins/metabolism , Pneumonia, Necrotizing/genetics , STAT Transcription Factors/metabolism , Staphylococcal Infections/genetics , Staphylococcus aureus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...