Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1280500, 2023.
Article in English | MEDLINE | ID: mdl-38088968

ABSTRACT

Microorganisms present on the surface of tobacco leaves play a significant role in shaping the composition of the tobacco microbial ecosystem, which undergoes continuous changes throughout the curing process. In the present study, a total of four distinct tobacco curing periods were selected for sampling, namely the fresh, yellowing, leaf-drying, and stem-drying stages. The bacterial 16S rRNA gene sequences of the collected samples were subsequently analyzed to identify operational taxonomic units (OTUs). The findings indicated that the complete dataset of leaf microbial samples was clustered, resulting in the identification of 1,783 operational taxonomic units (OTUs). Furthermore, the analysis of diversity revealed a pattern of initially increasing and subsequently decreasing community diversity. Redundancy Analysis (RDA) and weighted gene correlation networks for analysis (WGCNA) were employed in conjunction with environmental factors to assign OTUs to 22 modules for functional analysis. Additionally, a classification model utilizing the random forest algorithm was utilized to identify seven marker microorganisms (Escherichia coli, Faecalibacterium prausnitzii, Faecalibacterium, Escherichia-Shigella, Peptostreptococcaceae, Peptostreptococcales-Tissierellales, and Proteobacteria) that exhibited discriminative characteristics across different time periods. This study aimed to investigate the dynamic changes in the bacterial community throughout the curing process and their impact on the community's function. Additionally, certain bacteria were identified as potential markers for detecting changes in the curing stage. These findings offer a novel opportunity to accurately regulate the curing environment, thereby enhancing the overall quality of tobacco leaf curing.

2.
Plants (Basel) ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37896106

ABSTRACT

High-temperature stress is the main environmental stress that restricts the growth and development of woody plants, and the growth and development of woody plants are affected by high-temperature stress. The influence of high temperature on woody plants varies with the degree and duration of the high temperature and the species of woody plants. Woody plants have the mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody plants mainly counteracts the biochemical and physiological changes induced by stress by regulating osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the appropriate physiological, biochemical and genomic changes is the key to determining the survival of woody plants. The gene expression induced by high-temperature stress also greatly improves tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-temperature stress on seed germination, plant morphology and anatomical structure characteristics, physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed, which provides a reference for the study of the heat-tolerance mechanism of woody plants.

3.
Environ Res ; 203: 111819, 2022 01.
Article in English | MEDLINE | ID: mdl-34358504

ABSTRACT

Phenol's presence in aqueous solution due to the pollution from chemical and agricultural industries (e.g., coking tobacco leaves) causes severe environmental problems. As a result, many scientists and engineers search for catalysts to remove phenol from water by photodegradation. Thus, we synthesized Pt-doped TiO2-ZnO@ZIF-8 core@shell particles (Pt/TiO2-ZnO@ZIF-8) by a simple method involving crystallization, absorption, pyrolysis and growth steps. The resulting materials were analyzed by the powder X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM, respectively), surface area measurements and UV-vis absorption spectroscopy. The photocatalytic activities of our materials were evaluated by phenol degradation in aqueous solutions. Pt-doped TiO2-ZnO particles possessed a polyhedral structure and exhibited broad absorption above 400 nm. Coating with ZIF-8 increased the specific surface area of the Pt-doped TiO2-ZnO particles. Both Pt doping and ZIF-8 coating significantly enhanced the photocatalytic performance of TiO2-ZnO. Pt/TiO2-ZnO@ZIF-8 decomposed 99.7 % of phenol after the corresponding solution was exposed to UV light for 24 min. This performance was significantly better than the phenol decomposition ability of TiO2-ZnO, Pt/TiO2-ZnO and TiO2, which degraded 76.1 %, 95.2 % and 86.9 % of phenol, respectively. Pt/TiO2-ZnO@ZIF-8 also demonstrated excellent recycling stability. All these properties, including photostability, made our novel Pt/TiO2-ZnO@ZIF-8 catalyst a promising material for practical applications in environmental remediation.


Subject(s)
Zinc Oxide , Catalysis , Phenol , Titanium
4.
Front Chem ; 9: 834936, 2021.
Article in English | MEDLINE | ID: mdl-35118052

ABSTRACT

With the increasing demand for fossil fuels, decreasing fossil fuel reserves and deteriorating global environment, humanity urgently need to explore new clean and renewable energy to replace fossil fuel resources. Biodiesel, as an environmentally friendly fuel that has attracted considerable attention because of its renewable, biodegradable, and non-toxic superiority, seems to be a solution for future fuel production. Tobacco (Nicotiana tabacum L.), an industrial crop, is traditionally used for manufacturing cigarettes. More importantly, tobacco seed is also widely being deemed as a typical inedible oilseed crop for the production of second-generation biodiesel. Advancements in raw material and enhanced production methods are currently needed for the large-scale and sustainable production of biodiesel. To this end, this study reviews various aspects of extraction and transesterification methods, genetic and agricultural modification, and properties and application of tobacco biodiesel, while discussing the key problems in tobacco biodiesel production and application. Besides, the proposals of new ways or methods for producing biodiesel from tobacco crops are presented. Based on this review, we anticipate that this can further promote the development and application of biodiesel from tobacco seed oil by increasing the availability and reducing the costs of extraction, transesterification, and purification methods, cultivating new varieties or transgenic lines with high oilseed contents, formulating scientific agricultural norms and policies, and improving the environmental properties of biodiesel.

5.
Genomics ; 112(5): 3075-3088, 2020 09.
Article in English | MEDLINE | ID: mdl-32454168

ABSTRACT

Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi'na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.


Subject(s)
Hot Temperature , Nicotiana/growth & development , Plant Proteins/metabolism , Chlorophyll/metabolism , Malondialdehyde/metabolism , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Proteomics , Nicotiana/anatomy & histology , Nicotiana/metabolism
6.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244294

ABSTRACT

Tobacco (Nicotiana tabacum), is a world's major non-food agricultural crop widely cultivated for its economic value. Among several color change associated biological processes, plastid pigment metabolism is of trivial importance in postharvest plant organs during curing and storage. However, the molecular mechanisms involved in carotenoid and chlorophyll metabolism, as well as color change in tobacco leaves during curing, need further elaboration. Here, proteomic analysis at different curing stages (0 h, 48 h, 72 h) was performed in tobacco cv. Bi'na1 with an aim to investigate the molecular mechanisms of pigment metabolism in tobacco leaves as revealed by the iTRAQ proteomic approach. Our results displayed significant differences in leaf color parameters and ultrastructural fingerprints that indicate an acceleration of chloroplast disintegration and promotion of pigment degradation in tobacco leaves due to curing. In total, 5931 proteins were identified, of which 923 (450 up-regulated, 452 down-regulated, and 21 common) differentially expressed proteins (DEPs) were obtained from tobacco leaves. To elucidate the molecular mechanisms of pigment metabolism and color change, 19 DEPs involved in carotenoid metabolism and 12 DEPs related to chlorophyll metabolism were screened. The results exhibited the complex regulation of DEPs in carotenoid metabolism, a negative regulation in chlorophyll biosynthesis, and a positive regulation in chlorophyll breakdown, which delayed the degradation of xanthophylls and accelerated the breakdown of chlorophylls, promoting the formation of yellow color during curing. Particularly, the up-regulation of the chlorophyllase-1-like isoform X2 was the key protein regulatory mechanism responsible for chlorophyll metabolism and color change. The expression pattern of 8 genes was consistent with the iTRAQ data. These results not only provide new insights into pigment metabolism and color change underlying the postharvest physiological regulatory networks in plants, but also a broader perspective, which prompts us to pay attention to further screen key proteins in tobacco leaves during curing.


Subject(s)
Nicotiana/genetics , Nicotiana/metabolism , Pigments, Biological/metabolism , Plant Leaves/metabolism , Plastids/metabolism , Proteomics/methods , Chlorophyll/metabolism , Color , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plant Leaves/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Xanthophylls/metabolism
7.
Plant Physiol Biochem ; 150: 121-132, 2020 May.
Article in English | MEDLINE | ID: mdl-32142985

ABSTRACT

Withering is an important biological process accompanied by dehydration and cell wall metabolism in postharvest plant organs during curing/processing and storage. However, dynamics involved in cell wall metabolism and resultant water loss during withering in postharvest tobacco leaves is not well-documented. Here, tandem mass tag (TMT)-based quantitative proteomic analysis in postharvest tobacco leaves (cultivar K326) under different withering conditions was performed. In total, 11,556 proteins were detected, among which 496 differentially abundant proteins (DAPs) were identified. To elucidate the withering mechanism of tobacco leaves, 27 DAPs associated with cell wall metabolism were screened. In particular, pectin acetylesterases, glucan endo-1,3-beta-glucosidases, xyloglucan endotransglucosylase/hydrolase, alpha-xylosidase 1-like, probable galactinol-sucrose galactosyltransferases, endochitinase A, chitotriosidase-1-like and expansin were the key proteins responsible for the withering of postharvest tobacco leaves. These DAPs were mainly involved in pectin metabolism, cellulose, hemicellulose and galactose metabolism, amino sugar and nucleotide sugar metabolism as well as cell wall expansion. Furthermore, relative water content and softness values were significantly and positively correlated. Thus, dehydration and cell wall metabolism were crucial for tobacco leaf withering under different conditions. Nine candidate DAPs were confirmed by parallel reaction monitoring (PRM) technique. These results provide new insights into the withering mechanism underlying postharvest physiological regulatory networks in plants/crops.


Subject(s)
Cell Wall , Nicotiana , Plant Leaves , Proteomics , Water , Cell Wall/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/metabolism , Water/metabolism
8.
Analyst ; 136(19): 3943-9, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21808780

ABSTRACT

An electrochemical sensor, based on a graphene oxide (GO)-Nafion composite film modified glassy carbon electrode (GCE), was developed and used for detection of trace amounts of colchicine. Owing to the large surface area, good conductivity of GO and good affinity of Nafion, the sensor exhibited excellent electrocatalytic activity for the oxidation of colchicine, displaying a wide linear response from 5.0 × 10(-8) to 2.0 × 10(-5) mol L(-1) and a low detection limit of 1.5 × 10(-8) mol L(-1) in 0.1 mol L(-1) H(2)SO(4) solution. And this modified electrode exhibited a superior immunity from epinephrine, dopamine and ascorbic acid interference. The method was also applied successfully to detect colchicine in medicinal tablets.


Subject(s)
Carbon/chemistry , Colchicine/analysis , Colchicine/chemistry , Electrochemical Techniques/methods , Fluorocarbon Polymers/chemistry , Glass/chemistry , Oxides/chemistry , Electric Conductivity , Electrochemical Techniques/instrumentation , Electrodes , Membranes, Artificial , Oxidation-Reduction , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...