Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(31): 20629-20634, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30059115

ABSTRACT

The magnetic properties of the assembled Co nanoparticles on graphene were studied using X-ray magnetic circular dichroism (XMCD), magneto-optical Kerr effects, and a modeling simulation. We demonstrate that the superparamagnetic nanoparticles reveal a ferromagnetic phase when they are assembled on graphene. The moderate increase of the XMCD asymmetry and magnetization with coverage for this assembly indicates a dipolar-mediated magnetism, which is further verified by a model simulation considering the dipolar interaction between neighboring nanoparticles. Furthermore, C K-edge spectra reveal visible dichroism at the π* state of graphene, which indicates the existence of a spin-polarized interface state, while the assembled Co nanoparticles reveal a ferromagnetic phase. These results suggest an efficient route to stabilize the ferromagnetic phase of nanostructures on graphene by tailoring dipolar interactions, which is essential to realize a higher efficiency of spin injection in graphene-based spintronics.

2.
Phys Chem Chem Phys ; 20(2): 1261-1266, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29250624

ABSTRACT

The dissociation of water molecules absorbed on a cleaved non-polar GaN(11[combining macron]00) surface was studied primarily with synchrotron-based photoemission spectra and density-functional-theory calculations. The adsorbed water molecules are spontaneously dissociated into hydrogen atoms and hydroxyl groups at either 300 or 130 K, which implies a negligible activation energy (<11 meV) for the dissociation. The produced H and OH were bound to the surface nitrogen and gallium on GaN(11[combining macron]00) respectively. These results highlight the promising applications of the non-polar GaN(11[combining macron]00) surface in water dissociation and hydrogen generation.

3.
Fish Physiol Biochem ; 38(4): 1099-1106, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22215143

ABSTRACT

N-Methyl-D-aspartate (NMDA) receptors are implicated in a wide range of complex behavioral functions, including cognitive activity. Numerous studies have shown that using the repetitive administration of a noncompetitive NMDA receptor antagonist, MK-801, induces amnesia in rodents. In this study, the effect of a subchronic MK-801 treatment on the cognitive function of zebrafish was evaluated using a novel inhibitory avoidance task. First, we established a new system to investigate the inhibitory avoidance learning of zebrafish where they were trained to refrain from swimming from a shallow compartment to a deep compartment in order to avoid electric shock. Second, we found that blocking NMDA receptors by MK-801 could significantly attenuate the inhibitory avoidance behavior of the zebrafish and alter the telencephalic extracellular signal-regulated kinase (ERK) phosphorylation level 90 min after the inhibitory avoidance training. These results suggest that the formation of long-term emotional memory is possibly mediated by ERK activation in the telencephalon of zebrafish.


Subject(s)
Avoidance Learning , Extracellular Signal-Regulated MAP Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Telencephalon/enzymology , Zebrafish/physiology , Animals , Blotting, Western , Dizocilpine Maleate , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...