Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 7(9): e2300170, 2023 09.
Article in English | MEDLINE | ID: mdl-37154264

ABSTRACT

Wearable flexible strain sensors with spatial resolution enable the acquisition and analysis of complex actions for noninvasive personalized healthcare applications. To provide secure contact with skin and to avoid environmental pollution after usage, sensors with biocompatibility and biodegradability are highly desirable. Herein, wearable flexible strain sensors composed of crosslinked gold nanoparticle (GNP) thin films as the active conductive layer and transparent biodegradable polyurethane (PU) films as the flexible substrate are developed. The patterned GNP films (micrometer- to millimeter-scale square and rectangle geometry, alphabetic characters, and wave and array patterns) are transferred onto the biodegradable PU film via a facile, clean, rapid and high-precision contact printing method, without the need of a sacrificial polymer carrier or organic solvents. The GNP-PU strain sensor with low Young's modulus (≈17.8 MPa) and high stretchability showed good stability and durability (10 000 cycles) as well as degradability (42% weight loss after 17 days at 74 °C in water). The GNP-PU strain sensor arrays with spatiotemporal strain resolution are applied as wearable eco-friendly electronics for monitoring subtle physiological signals (e.g., mapping of arterial lines and sensing pulse waveforms) and large-strain actions (e.g., finger bending).


Subject(s)
Metal Nanoparticles , Wearable Electronic Devices , Gold , Skin , Delivery of Health Care
2.
Polymers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112001

ABSTRACT

Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the ß-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the ß-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.

3.
Adv Healthc Mater ; 11(16): e2201021, 2022 08.
Article in English | MEDLINE | ID: mdl-35758924

ABSTRACT

Chronic cutaneous wounds from tissue trauma or extensive burns can impair skin barrier function and cause severe infection. Fabrication of a customizable tissue-engineered skin is a promising strategy for regeneration of uneven wounds. Herein, a planar-/curvilinear-bioprintable hydrogel is developed to produce tissue-engineered skin and evaluated in rat models of chronic and irregular wounds. The hydrogel is composed of biodegradable polyurethane (PU) and gelatin. The hydrogel laden with cells displays good 3D printability and structure stability. The circular wounds of normal and diabetes mellitus (DM) rats treated with planar-printed tri-cell-laden (fibroblasts, keratinocytes, and endothelial progenitor cells (EPCs)) hydrogel demonstrate full reepithelization and dermal repair as well as large amounts of neovascularization and collagen production after 28 days. Furthermore, the curvilinear module is fabricated based on the corresponding wound topography for curvilinear-bioprinting of the irregular tissue-engineered skin. The large and irregular rat skin wounds treated with curvilinear-printed tri-cell-laden hydrogel demonstrate full repair after 28 days. This planar-/curvilinear-bioprintable tri-cell-laden hydrogel shows great potential for customized biofabrication in skin tissue engineering.


Subject(s)
Bioprinting , Hydrogels , Animals , Gelatin/chemistry , Gelatin/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Printing, Three-Dimensional , Rats , Tissue Engineering , Tissue Scaffolds/chemistry
4.
Biofabrication ; 13(4)2021 09 27.
Article in English | MEDLINE | ID: mdl-34530408

ABSTRACT

Four-dimensional (4D) bioprinting is an emerging biofabrication technology that integrates time as a fourth dimension with three-dimensional (3D) bioprinting for fabricating customizable tissue-engineered implants. 4D bioprinted implants are expected to possess self-healing and shape memory properties for new application opportunities, for instance, fabrication of devices with good shape integrity for minimally invasive surgery. Herein, we developed a self-healing hydrogel composed of biodegradable polyurethane (PU) nanoparticles and photo-/thermo-responsive gelatin-based biomaterials. The self-healing property of hydrogel may be associated with the formation of reversible ionomeric interaction between the COO-group of PU nanoparticles and NH3+group on the gelatin chains. The self-healing hydrogel demonstrated excellent 3D printability and filament resolution. The UV-crosslinked printed hydrogel showed good stackability (>80 layers), structural stability, elasticity, and tunable modulus (1-60 kPa). The shape-memorizable 4D printed constructs revealed good shape fixity (∼95%) and shape recovery (∼98%) through the elasticity as well as forming and collapsing of water lattice in the hydrogel. The hydrogel and the printing process supported the continuous proliferation of neural stem cells (NSCs) (∼3.7-fold after 14 days). Moreover, the individually bioprinted NSCs and mesenchymal stem cells in the adjacent, self-healed filaments showed mutual migration and such interaction promoted the cell differentiation behavior. The cryopreserved (-20 °C or -80 °C) 4D bioprinted hydrogel after awakening and shape recovery at 37 °C demonstrated cell proliferation similar to that of the non-cryopreserved control. This 4D bioprintable, self-healable hydrogel with shape memory and cryopreserving properties may be employed for customized biofabrication.


Subject(s)
Bioprinting , Hydrogels , Gelatin , Printing, Three-Dimensional , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...