Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 659, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253565

ABSTRACT

Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Glycosylphosphatidylinositols , Animals , Mice , Humans , HEK293 Cells , Proteomics , GPI-Linked Proteins , Proteins
2.
Mol Metab ; 75: 101773, 2023 09.
Article in English | MEDLINE | ID: mdl-37422000

ABSTRACT

BACKGROUND: Lipolysis is a key metabolic pathway in adipocytes that renders stored triglycerides available for use by other cells and tissues. Non-esterified fatty acids (NEFAs) are known to exert feedback inhibition on adipocyte lipolysis, but the underlying mechanisms have only partly been elucidated. An essential enzyme in adipocyte lipolysis is ATGL. Here, we examined the role of the ATGL inhibitor HILPDA in the negative feedback regulation of adipocyte lipolysis by fatty acids. METHODS: We exposed wild-type, HILPDA-deficient and HILPDA-overexpressing adipocytes and mice to various treatments. HILPDA and ATGL protein levels were determined by Western blot. ER stress was assessed by measuring the expression of marker genes and proteins. Lipolysis was studied in vitro and in vivo by measuring NEFA and glycerol levels. RESULTS: We show that HILPDA mediates a fatty acid-induced autocrine feedback loop in which elevated intra- or extracellular fatty acids levels upregulate HILPDA by activation of the ER stress response and the fatty acid receptor 4 (FFAR4). The increased HILPDA levels in turn downregulate ATGL protein levels to suppress intracellular lipolysis, thereby maintaining lipid homeostasis. The deficiency of HILPDA under conditions of excessive fatty acid load disrupts this chain of events, leading to elevated lipotoxic stress in adipocytes. CONCLUSION: Our data indicate that HILPDA is a lipotoxic marker in adipocytes that mediates a negative feedback regulation of lipolysis by fatty acids via ATGL and alleviates cellular lipotoxic stress.


Subject(s)
Fatty Acids , Lipase , Animals , Mice , Hydrolysis , Fatty Acids/metabolism , Triglycerides/metabolism , Feedback , Lipase/metabolism , Adipocytes/metabolism , Fatty Acids, Nonesterified/metabolism
3.
Cell ; 186(15): 3245-3260.e23, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369203

ABSTRACT

Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/metabolism , Protein Processing, Post-Translational , Mammals
4.
Nat Commun ; 14(1): 3132, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253728

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) and ER-phagy are two principal degradative mechanisms for ER proteins and aggregates, respectively; however, the crosstalk between these two pathways under physiological settings remains unexplored. Using adipocytes as a model system, here we report that SEL1L-HRD1 protein complex of ERAD degrades misfolded ER proteins and limits ER-phagy and that, only when SEL1L-HRD1 ERAD is impaired, the ER becomes fragmented and cleared by ER-phagy. When both are compromised, ER fragments containing misfolded proteins spatially coalesce into a distinct architecture termed Coalescence of ER Fragments (CERFs), consisted of lipoprotein lipase (LPL, a key lipolytic enzyme and an endogenous SEL1L-HRD1 substrate) and certain ER chaperones. CERFs enlarge and become increasingly insoluble with age. Finally, we reconstitute the CERFs through LPL and BiP phase separation in vitro, a process influenced by both redox environment and C-terminal tryptophan loop of LPL. Hence, our findings demonstrate a sequence of events centered around SEL1L-HRD1 ERAD to dispose of misfolded proteins in the ER of adipocytes, highlighting the profound cellular adaptability to misfolded proteins in the ER in vivo.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Adipocytes/metabolism
5.
Nat Cell Biol ; 25(5): 726-739, 2023 05.
Article in English | MEDLINE | ID: mdl-37142791

ABSTRACT

Stimulator of interferon genes (STING) orchestrates the production of proinflammatory cytokines in response to cytosolic double-stranded DNA; however, the pathophysiological significance and molecular mechanism underlying the folding and maturation of nascent STING protein at the endoplasmic reticulum (ER) remain unknown. Here we report that the SEL1L-HRD1 protein complex-the most conserved branch of ER-associated degradation (ERAD)-is a negative regulator of the STING innate immunity by ubiquitinating and targeting nascent STING protein for proteasomal degradation in the basal state. SEL1L or HRD1 deficiency in macrophages specifically amplifies STING signalling and immunity against viral infection and tumour growth. Mechanistically, nascent STING protein is a bona fide substrate of SEL1L-HRD1 in the basal state, uncoupled from ER stress or its sensor inositol-requiring enzyme 1α. Hence, our study not only establishes a key role of SEL1L-HRD1 ERAD in innate immunity by limiting the size of the activable STING pool, but identifies a regulatory mechanism and therapeutic approach to targeting STING.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum/metabolism , Immunity, Innate
6.
iScience ; 25(10): 105183, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36238898

ABSTRACT

Endoplasmic reticulum (ER) homeostasis has been implicated in the pathogenesis of various forms of cancer; however, our understanding of the role of ER quality control mechanisms in tumorigenesis remains incomplete. Here, we show that the SEL1L-HRD1 complex of ER-associated degradation (ERAD) suppresses hepatocyte proliferation and tumorigenesis in mice. Hepatocyte-specific deletion of Sel1L or Hrd1 predisposed mice to diet/chemical-induced tumors. Proteomics screen from SEL1L-deficient livers revealed WNT5A, a tumor suppressor, as an ERAD substrate. Indeed, nascent WNT5A was misfolding prone and degraded by SEL1L-HRD1 ERAD in a quality control capacity. In the absence of ERAD, WNT5A misfolds is largely retained in the ER and forms high-molecular weight aggregates, thereby depicting a loss-of-function effect and attenuating WNT5A-mediated suppression of hepatocyte proliferation. In humans, SEL1L-HRD1 ERAD expression correlated positively with survival time for patients with liver cancer. Overall, our data reveal a key role of SEL1L-HRD1 ERAD in suppressing hepatocyte proliferation and liver cancer.

7.
J Ethnopharmacol ; 279: 114340, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34171397

ABSTRACT

BACKGROUND: Cassia mimosoides Linn (CMD) is a traditional Chinese herb that clears liver heat and dampness. It has been widely administered in clinical practice to treat jaundice associated with damp-heat pathogen and obesity. Emodin (EMO) is a major bioactive constituent of CMD that has apparent therapeutic efficacy against obesity and fatty liver. Here, we investigated the protective effects and underlying mechanisms of EMO against high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). OBJECTIVE: We aimed to investigate whether EMO activates farnesoid X receptor (FXR) signaling to alleviate HFD-induced NAFLD. MATERIALS AND METHODS: In vivo assays included serum biochemical indices tests, histopathology, western blotting, and qRT-PCR to evaluate the effects of EMO on glucose and lipid metabolism disorders in wild type (WT) and FXR knockout mice maintained on an HFD. In vitro experiments included intracellular triglyceride (TG) level measurement and Oil Red O staining to assess the capacity of EMO to remove lipids induced by oleic acid and palmitic acid in WT and FXR knockout mouse primary hepatocytes (MPHs). We also detected mRNA expression of FXR signaling genes in MPHs. RESULTS: After HFD administration, body weight and serum lipid and inflammation levels were dramatically increased in the WT mice. The animals also presented with impaired glucose tolerance, insulin resistance, and antioxidant capacity, liver tissue attenuation, and pathological injury. EMO remarkably reversed the foregoing changes in HFD-induced mice. EMO improved HFD-induced lipid accumulation, insulin resistance, inflammation, and oxidative stress in a dose-dependent manner in WT mice by inhibiting FXR expression. EMO also significantly repressed TG hyperaccumulation by upregulating FXR expression in MPHs. However, it did not improve lipid accumulation, insulin sensitivity, or glucose tolerance in HFD-fed FXR knockout mice. CONCLUSIONS: The present study demonstrated that EMO alleviates HFD-induced NAFLD by activating FXR signaling which improves lipid accumulation, insulin resistance, inflammation, and oxidative stress.


Subject(s)
Cassia/chemistry , Emodin/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Emodin/administration & dosage , Emodin/isolation & purification , Glucose/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Inflammation/drug therapy , Inflammation/pathology , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/physiopathology , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Triglycerides/blood
8.
Trends Endocrinol Metab ; 32(1): 48-61, 2021 01.
Article in English | MEDLINE | ID: mdl-33277156

ABSTRACT

Lipoprotein lipase (LPL) is one of the most important factors in systemic lipid partitioning and metabolism. It mediates intravascular hydrolysis of triglycerides packed in lipoproteins such as chylomicrons and very-low-density lipoprotein (VLDL). Since its initial discovery in the 1940s, its biology and pathophysiological significance have been well characterized. Nonetheless, several studies in the past decade, with recent delineation of LPL crystal structure and the discovery of several new regulators such as angiopoietin-like proteins (ANGPTLs), glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1 (LMF1) and Sel-1 suppressor of Lin-12-like 1 (SEL1L), have completely transformed our understanding of LPL biology.


Subject(s)
Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/metabolism , Animals , Endoplasmic Reticulum/metabolism , Humans , Hyperlipidemias/metabolism , Lipoprotein Lipase/genetics , Receptors, Lipoprotein/genetics , Triglycerides/metabolism
9.
J Ethnopharmacol ; 255: 112776, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32205261

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: The farnesoid X receptor (FXR) is a therapeutic target of for the treatment of non-alcoholic fatty liver disease (NAFLD) owing to its regulatory role in lipid homeostasis. Schaftoside (SS) is a bioactive compound of Herba Desmodii Styracifolii, which has traditionally been used to treat hepatitis and cholelithiasis. However, the potential hepatoprotective effect of SS against NAFLD and the underlying mechanisms remain unknown. AIM OF THE STUDY: We investigated whether SS could improve NAFLD-induced liver injury by decreasing lipid accumulation via the activation of FXR signalling. MATERIALS AND METHODS: In vivo, the effects of SS on high-fat diet (HFD)-induced lipid accumulation in the liver of mice were evaluated by serum biochemical parameters and histopathological analysis. In vitro, the intracellular triglyceride (TG) level and Oil Red O staining were used to evaluate the lipid removal ability of SS in Huh-7 cells or FXR knockout mouse primary hepatocytes (MPHs) induced by oleic acid (OA). Moreover, FXR/sterol regulatory element-binding protein 1 (SREBP1) mRNA and protein expression levels were detected. RESULTS: SS reduced HFD-induced lipid accumulation in the liver, as indicated by decreased aspartate aminotransferase (AST), cholesterol (Ch), and TG levels in serum and TG levels in liver tissue, and subsequently resulting in attenuation of liver histopathological injury. Gene expression profiles demonstrated that SS dose-dependently prevented HFD-induced decrease of FXR expression and inversely inhibited SREBP1 expression in the nucleus. Furthermore, SS significantly suppressed excessive TG accumulation and decreased intracellular TG level in Huh-7 cells or MPHs via the upregulation of FXR and inhibition of SREBP1 expression in the nucleus. CONCLUSION: Our results suggest that SS ameliorates HFD-induced NAFLD by the decrease of lipid accumulation via the control of FXR-SREBP1 signalling.


Subject(s)
Glycosides/pharmacology , Hepatocytes/drug effects , Hypolipidemic Agents/pharmacology , Lipid Metabolism/drug effects , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Receptors, Cytoplasmic and Nuclear/drug effects , Animals , Cell Line, Tumor , Cholesterol/metabolism , Diet, High-Fat , Disease Models, Animal , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism , Up-Regulation
10.
Cell Metab ; 31(2): 301-312.e5, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31955990

ABSTRACT

To understand hindbrain pathways involved in the control of food intake, we examined roles for calcitonin receptor (CALCR)-containing neurons in the NTS. Ablation of NTS Calcr abrogated the long-term suppression of food intake, but not aversive responses, by CALCR agonists. Similarly, activating CalcrNTS neurons decreased food intake and body weight but (unlike neighboring CckNTS cells) failed to promote aversion, revealing that CalcrNTS neurons mediate a non-aversive suppression of food intake. While both CalcrNTS and CckNTS neurons decreased feeding via projections to the PBN, CckNTS cells activated aversive CGRPPBN cells while CalcrNTS cells activated distinct non-CGRP PBN cells. Hence, CalcrNTS cells suppress feeding via non-aversive, non-CGRP PBN targets. Additionally, silencing CalcrNTS cells blunted food intake suppression by gut peptides and nutrients, increasing food intake and promoting obesity. Hence, CalcrNTS neurons define a hindbrain system that participates in physiological energy balance and suppresses food intake without activating aversive systems.


Subject(s)
Eating , Energy Metabolism , Neurons/metabolism , Receptors, Calcitonin/physiology , Solitary Nucleus/metabolism , Animals , Body Weight , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Solitary Nucleus/cytology
11.
Cell Discov ; 5: 60, 2019.
Article in English | MEDLINE | ID: mdl-31754457

ABSTRACT

mTORC1 is a protein kinase important for metabolism and is regulated by growth factor and nutrient signaling pathways, mediated by the Rheb and Rag GTPases, respectively. Here we provide the first animal model in which both pathways were upregulated through concurrent mutations in their GTPase-activating proteins, Tsc1 and Depdc5. Unlike former models that induced limited mTORC1 upregulation, hepatic deletion of both Tsc1 and Depdc5 (DKO) produced strong, synergistic activation of the mTORC1 pathway and provoked pronounced and widespread hepatocyte damage, leading to externally visible liver failure phenotypes, such as jaundice and systemic growth defects. The transcriptome profile of DKO was different from single knockout mutants but similar to those of diseased human livers with severe hepatitis and mouse livers challenged with oxidative stress-inducing chemicals. In addition, DKO liver cells exhibited prominent molecular pathologies associated with excessive endoplasmic reticulum (ER) stress, oxidative stress, DNA damage and inflammation. Although DKO liver pathologies were ameliorated by mTORC1 inhibition, ER stress suppression unexpectedly aggravated them, suggesting that ER stress signaling is not the major conduit of how hyperactive mTORC1 produces liver damage. Interestingly, superoxide scavengers N-acetylcysteine (NAC) and Tempol, chemicals that reduce oxidative stress, were able to recover liver phenotypes, indicating that mTORC1 hyperactivation induced liver damage mainly through oxidative stress pathways. Our study provides a new model of unregulated mTORC1 activation through concomitant upregulation of growth factor and nutrient signaling axes and shows that mTORC1 hyperactivation alone can provoke oxidative tissue injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...