Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Heliyon ; 10(15): e35716, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170323

ABSTRACT

Purpose: Capillary Refill Time (CRT) measurement has gained increasing attention in the field of sepsis and septic shock. Recognizing pressure as a fundamental determinant in CRT measurement is crucial for establishing a standardized CRT measurement procedure. In this preliminary study, we elucidated the optimal pressing strength for CRT measurement by analyzing the CRTs measured under varying pressures. Method: Seventeen healthy individuals were enlisted to undergo CRT tests on their fingertips at various pressure levels. The applied force was initiated at 0.5N and incrementally increased by 0.5N until it reached 10.5N. An integrated Photoplethysmography (PPG) device was employed to capture fluctuations in light intensity. The CRT was automatically derived from the PPG signals via a specialized algorithm. The study included correlation assessment and reliability evaluation. Box plot and Bland-Altman plot were used to visualize the impact of pressure levels on CRTs. Results: A dataset of 1414 CRTs across 21 pressures showed significant differences (Kruskal-Wallis test, p < 0.0001), highlighting the impact of pressure on CRT. CRT values between 4.5N and 10.5N pressures varied less, with an Intraclass Correlation Coefficient (ICC) of 0.499 indicating moderate consistency. Notably, CRTs at 10N and 10.5N pressures revealed a high ICC of 0.790, suggesting strong agreement. Conclusion: A pressure range of 4.5N-10.5N is recommended for stable CRT measurements, with 10.0N-10.5N providing optimal consistency and reliability.

2.
Tomography ; 10(8): 1238-1262, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39195728

ABSTRACT

The concept of 'brain age', derived from neuroimaging data, serves as a crucial biomarker reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning (ML) and deep learning (DL) integration has transformed the field, providing advanced models for brain age estimation. However, achieving precise brain age prediction across all ages remains a significant analytical challenge. This comprehensive review scrutinizes advancements in ML- and DL-based brain age prediction, analyzing 52 peer-reviewed studies from 2020 to 2024. It assesses various model architectures, highlighting their effectiveness and nuances in lifespan brain age studies. By comparing ML and DL, strengths in forecasting and methodological limitations are revealed. Finally, key findings from the reviewed articles are summarized and a number of major issues related to ML/DL-based lifespan brain age prediction are discussed. Through this study, we aim at the synthesis of the current state of brain age prediction, emphasizing both advancements and persistent challenges, guiding future research, technological advancements, and improving early intervention strategies for neurodegenerative diseases.


Subject(s)
Aging , Brain , Deep Learning , Machine Learning , Humans , Brain/diagnostic imaging , Aging/physiology , Neuroimaging/methods , Longevity , Aged
3.
Comput Methods Programs Biomed ; 256: 108374, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39153229

ABSTRACT

BACKGROUND AND OBJECTIVE: Ultrasound information entropy imaging is an emerging quantitative ultrasound technique for characterizing local tissue scatterer concentrations and arrangements. However, the commonly used ultrasound Shannon entropy imaging based on histogram-derived discrete probability estimation suffers from the drawbacks of histogram settings dependence and unknown estimator performance. In this paper, we introduced the information-theoretic cumulative residual entropy (CRE) defined in a continuous distribution of cumulative distribution functions as a new entropy measure of ultrasound backscatter envelope uncertainty or complexity, and proposed ultrasound CRE imaging for tissue characterization. METHODS: We theoretically analyzed the CRE for Rayleigh and Nakagami distributions and proposed a normalized CRE for characterizing scatterer distribution patterns. We proposed a method based on an empirical cumulative distribution function estimator and a trapezoidal numerical integration for estimating the normalized CRE from ultrasound backscatter envelope signals. We presented an ultrasound normalized CRE imaging scheme based on the normalized CRE estimator and the parallel computation technique. We also conducted theoretical analysis of the differential entropy which is an extension of the Shannon entropy to a continuous distribution, and introduced a method for ultrasound differential entropy estimation and imaging. Monte-Carlo simulation experiments were performed to evaluate the estimation accuracy of the normalized CRE and differential entropy estimators. Phantom simulation and clinical experiments were conducted to evaluate the performance of the proposed normalized CRE imaging in characterizing scatterer concentrations and hepatic steatosis (n = 204), respectively. RESULTS: The theoretical normalized CRE for the Rayleigh distribution was π/4, corresponding to the case where there were ≥10 randomly distributed scatterers within the resolution cell of an ultrasound transducer. The theoretical normalized CRE for the Nakagami distribution decreased as the Nakagami parameter m increased, corresponding to that the ultrasound backscattered statistics varied from pre-Rayleigh to Rayleigh and to post-Rayleigh distributions. Monte-Carlo simulation experiments showed that the proposed normalized CRE and differential entropy estimators can produce a satisfying estimation accuracy even when the size of the test samples is small. Phantom simulation experiments showed that the proposed normalized CRE and differential entropy imaging can characterize scatterer concentrations. Clinical experiments showed that the proposed ultrasound normalized CRE imaging is capable to quantitatively characterize hepatic steatosis, outperforming ultrasound differential entropy imaging and being comparable to ultrasound Shannon entropy and Nakagami imaging. CONCLUSION: This study sheds light on the theory and methodology of ultrasound normalized CRE. The proposed ultrasound normalized CRE can serve as a new, flexible quantitative ultrasound envelope statistics parameter. The proposed ultrasound normalized CRE imaging may find applications in quantified characterization of biological tissues. Our code will be made available publicly at https://github.com/zhouzhuhuang.

4.
J Neural Eng ; 21(4)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39029477

ABSTRACT

Objective. Monitoring the depth of anaesthesia (DOA) during surgery is of critical importance. However, during surgery electroencephalography (EEG) is usually subject to various disturbances that affect the accuracy of DOA. Therefore, accurately estimating noise in EEG and reliably assessing DOA remains an important challenge. In this paper, we proposed a signal quality index (SQI) network (SQINet) for assessing the EEG signal quality and a DOA network (DOANet) for analyzing EEG signals to precisely estimate DOA. The two networks are termed SQI-DOANet.Approach. The SQINet contained a shallow convolutional neural network to quickly determine the quality of the EEG signal. The DOANet comprised a feature extraction module for extracting features, a dual attention module for fusing multi-channel and multi-scale information, and a gated multilayer perceptron module for extracting temporal information. The performance of the SQI-DOANet model was validated by training and testing the model on the large VitalDB database, with the bispectral index (BIS) as the reference standard.Main results. The proposed DOANet yielded a Pearson correlation coefficient with the BIS score of 0.88 in the five-fold cross-validation, with a mean absolute error (MAE) of 4.81. The mean Pearson correlation coefficient of SQI-DOANet with the BIS score in the five-fold cross-validation was 0.82, with an MAE of 5.66.Significance. The SQI-DOANet model outperformed three compared methods. The proposed SQI-DOANet may be used as a new deep learning method for DOA estimation. The code of the SQI-DOANet will be made available publicly athttps://github.com/YuRui8879/SQI-DOANet.


Subject(s)
Anesthesia , Electroencephalography , Neural Networks, Computer , Electroencephalography/methods , Electroencephalography/standards , Humans , Anesthesia/methods , Deep Learning , Signal Processing, Computer-Assisted
5.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39061729

ABSTRACT

The intricate dynamics of brain aging, especially the neurodegenerative mechanisms driving accelerated (ABA) and resilient brain aging (RBA), are pivotal in neuroscience. Understanding the temporal dynamics of these phenotypes is crucial for identifying vulnerabilities to cognitive decline and neurodegenerative diseases. Currently, there is a lack of comprehensive understanding of the temporal dynamics and neuroimaging biomarkers linked to ABA and RBA. This study addressed this gap by utilizing a large-scale UK Biobank (UKB) cohort, with the aim to elucidate brain aging heterogeneity and establish the foundation for targeted interventions. Employing Lasso regression on multimodal neuroimaging data, structural MRI (sMRI), diffusion MRI (dMRI), and resting-state functional MRI (rsfMRI), we predicted the brain age and classified individuals into ABA and RBA cohorts. Our findings identified 1949 subjects (6.2%) as representative of the ABA subpopulation and 3203 subjects (10.1%) as representative of the RBA subpopulation. Additionally, the Discriminative Event-Based Model (DEBM) was applied to estimate the sequence of biomarker changes across aging trajectories. Our analysis unveiled distinct central ordering patterns between the ABA and RBA cohorts, with profound implications for understanding cognitive decline and vulnerability to neurodegenerative disorders. Specifically, the ABA cohort exhibited early degeneration in four functional networks and two cognitive domains, with cortical thinning initially observed in the right hemisphere, followed by the temporal lobe. In contrast, the RBA cohort demonstrated initial degeneration in the three functional networks, with cortical thinning predominantly in the left hemisphere and white matter microstructural degeneration occurring at more advanced stages. The detailed aging progression timeline constructed through our DEBM analysis positioned subjects according to their estimated stage of aging, offering a nuanced view of the aging brain's alterations. This study holds promise for the development of targeted interventions aimed at mitigating age-related cognitive decline.

6.
Proc Inst Mech Eng H ; 238(7): 814-826, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045922

ABSTRACT

The pancreas is adjacent to critical organs; excessive microwave ablation (MWA) can result in serious complications. The purpose of this paper is to provide the reference data of pancreas MWA for clinicians, analyze the ablation outcomes under different ablation parameters, and determine the critical temperature of pancreatic surface fat liquefaction outflow. Combinations of two power levels (30 W and 55 W), three antenna diameters (1.3 mm, 1.6 mm, and 1.9 mm), and three ablation times (1 min, 1.5 min, and 2 min) were applied to an ex vivo pig pancreas. Temperature measurements were taken at four thermocouple points. The center point is located 5 mm horizontally from the antenna slot, with a temperature measurement point located 5 mm above, below, and to the right of the center point. Main effect analysis and variance analysis were used to quantify the influences of each factor on the ablation outcomes. At 30 W, the antenna diameter contributing the most at 48.5%. At 30 W-1.3 mm-1 min, the spherical index (1.41) is closest to 1. At 55 W, the coagulation zone size was almost only affected by the ablation time, with a contribution rate of 28.7%, the temperature at point C exceeds point B. On the surface of the ex vivo porcine pancreas, the fat outflow temperature was 54ã. Ablation combinations with low power, short duration, and small antenna diameter results in a more nearly spherical coagulation zone. When performing MWA on the pancreas, it is advisable to avoid areas with higher fat content, while keeping the pancreatic surface temperature below 54°C.


Subject(s)
Ablation Techniques , Microwaves , Pancreas , Temperature , Animals , Swine , Pancreas/surgery , Adipose Tissue/surgery
7.
Sensors (Basel) ; 24(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38894328

ABSTRACT

OBJECTIVE: Aiming at the shortcomings of artificial surgical path planning for the thermal ablation of liver tumors, such as the time-consuming and labor-consuming process, and relying heavily on doctors' puncture experience, an automatic path-planning system for thermal ablation of liver tumors based on CT images is designed and implemented. METHODS: The system mainly includes three modules: image segmentation and three-dimensional reconstruction, automatic surgical path planning, and image information management. Through organ segmentation and three- dimensional reconstruction based on CT images, the personalized abdominal spatial anatomical structure of patients is obtained, which is convenient for surgical path planning. The weighted summation method based on clinical constraints and the concept of Pareto optimality are used to solve the multi-objective optimization problem, screen the optimal needle entry path, and realize the automatic planning of the thermal ablation path. The image information database was established to store the information related to the surgical path. RESULTS: In the discussion with clinicians, more than 78% of the paths generated by the planning system were considered to be effective, and the efficiency of system path planning is higher than doctors' planning efficiency. CONCLUSION: After improvement, the system can be used for the planning of the thermal ablation path of a liver tumor and has certain clinical application value.


Subject(s)
Liver Neoplasms , Tomography, X-Ray Computed , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , Ablation Techniques/methods , Algorithms , Image Processing, Computer-Assisted/methods , Surgery, Computer-Assisted/methods , Liver/surgery , Liver/diagnostic imaging
8.
Ultrason Sonochem ; 107: 106910, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772312

ABSTRACT

Ultrasound envelope statistics imaging, including ultrasound Nakagami imaging, homodyned-K imaging, and information entropy imaging, is an important group of quantitative ultrasound techniques for characterizing tissue scatterer distribution patterns, such as scatterer concentrations and arrangements. In this study, we proposed a machine learning approach to integrate the strength of multimodality quantitative ultrasound envelope statistics imaging techniques and applied it to detecting microwave ablation induced thermal lesions in porcine liver ex vivo. The quantitative ultrasound parameters included were homodyned-K α which is a scatterer clustering parameter related to the effective scatterer number per resolution cell, Nakagami m which is a shape parameter of the envelope probability density function, and Shannon entropy which is a measure of signal uncertainty or complexity. Specifically, the homodyned-K log10(α), Nakagami-m, and horizontally normalized Shannon entropy parameters were combined as input features to train a support vector machine (SVM) model to classify thermal lesions with higher scatterer concentrations from normal tissues with lower scatterer concentrations. Through heterogeneous phantom simulations based on Field II, the proposed SVM model showed a classification accuracy above 0.90; the area accuracy and Dice score of higher-scatterer-concentration zone identification exceeded 83% and 0.86, respectively, with the Hausdorff distance <26. Microwave ablation experiments of porcine liver ex vivo at 60-80 W, 1-3 min showed that the SVM model achieved a classification accuracy of 0.85; compared with single log10(α),m, or hNSE parametric imaging, the SVM model achieved the highest area accuracy (89.1%) and Dice score (0.77) as well as the smallest Hausdorff distance (46.38) of coagulation zone identification. We concluded that the proposed multimodality quantitative ultrasound envelope statistics imaging based SVM approach can enhance the capability to characterize tissue scatterer distribution patterns and has the potential to detect the thermal lesions induced by microwave ablation.


Subject(s)
Liver , Microwaves , Support Vector Machine , Ultrasonography , Animals , Swine , Ultrasonography/methods , Liver/diagnostic imaging , Liver/pathology , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
9.
Sensors (Basel) ; 24(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38733053

ABSTRACT

The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action potential during conduction, reflecting the developmental status of the fetus in utero and its physiological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia, fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals with clear morphological information, this paper proposes a novel deep learning model, CBLS-CycleGAN. The model's generator combines spatial features extracted by the CNN with temporal features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess combined features with spatial and temporal dependencies. The model's discriminator utilizes PatchGAN, employing small segments of the signal as discriminative inputs to concentrate the training process on capturing signal details. Evaluating the model using two real FECG signal databases, namely "Abdominal and Direct Fetal ECG Database" and "Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations", resulted in a mean MSE and MAE of 0.019 and 0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value, and F1 of 99.51%, 99.57%, and 99.54%, respectively. This paper's model effectively preserves the morphological information of FECG signals, capturing not only the FQRS compound wave but also the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial diagnostic insights and a scientific foundation for developing rational treatment protocols.


Subject(s)
Electrocardiography , Neural Networks, Computer , Signal Processing, Computer-Assisted , Humans , Electrocardiography/methods , Female , Pregnancy , Deep Learning , Fetal Monitoring/methods , Algorithms , Fetus
10.
Bioengineering (Basel) ; 11(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391610

ABSTRACT

Accelerated brain aging (ABA) intricately links with age-associated neurodegenerative and neuropsychiatric diseases, emphasizing the critical need for a nuanced exploration of heterogeneous ABA patterns. This investigation leveraged data from the UK Biobank (UKB) for a comprehensive analysis, utilizing structural magnetic resonance imaging (sMRI), diffusion magnetic resonance imaging (dMRI), and resting-state functional magnetic resonance imaging (rsfMRI) from 31,621 participants. Pre-processing employed tools from the FMRIB Software Library (FSL, version 5.0.10), FreeSurfer, DTIFIT, and MELODIC, seamlessly integrated into the UKB imaging processing pipeline. The Lasso algorithm was employed for brain-age prediction, utilizing derived phenotypes obtained from brain imaging data. Subpopulations of accelerated brain aging (ABA) and resilient brain aging (RBA) were delineated based on the error between actual age and predicted brain age. The ABA subgroup comprised 1949 subjects (experimental group), while the RBA subgroup comprised 3203 subjects (control group). Semi-supervised heterogeneity through discriminant analysis (HYDRA) refined and characterized the ABA subgroups based on distinctive neuroimaging features. HYDRA systematically stratified ABA subjects into three subtypes: SubGroup 2 exhibited extensive gray-matter atrophy, distinctive white-matter patterns, and unique connectivity features, displaying lower cognitive performance; SubGroup 3 demonstrated minimal atrophy, superior cognitive performance, and higher physical activity; and SubGroup 1 occupied an intermediate position. This investigation underscores pronounced structural and functional heterogeneity in ABA, revealing three subtypes and paving the way for personalized neuroprotective treatments for age-related neurological, neuropsychiatric, and neurodegenerative diseases.

11.
Ultrasonics ; 138: 107256, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325231

ABSTRACT

Ultrasound information entropy is a flexible approach for analyzing ultrasound backscattering. Shannon entropy imaging based on probability distribution histograms (PDHs) has been implemented as a promising method for tissue characterization and diagnosis. However, the bin number affects the stability of entropy estimation. In this study, we introduced the k-nearest neighbor (KNN) algorithm to estimate entropy values and proposed ultrasound KNN entropy imaging. The proposed KNN estimator leveraged the Euclidean distance between data samples, rather than the histogram bins by conventional PDH estimators. We also proposed cumulative relative entropy (CRE) imaging to analyze time-series radiofrequency signals and applied it to monitor thermal lesions induced by microwave ablation (MWA). Computer simulation phantom experiments were conducted to validate and compare the performance of the proposed KNN entropy imaging, the conventional PDH entropy imaging, and Nakagami-m parametric imaging in detecting the variations of scatterer densities and visualizing inclusions. Clinical data of breast lesions were analyzed, and porcine liver MWA experiments ex vivo were conducted to validate the performance of KNN entropy imaging in classifying benign and malignant breast tumors and monitoring thermal lesions, respectively. Compared with PDH, the entropy estimation based on KNN was less affected by the tuning parameters. KNN entropy imaging was more sensitive to changes in scatterer densities and performed better visualizable capability than typical Shannon entropy (TSE) and Nakagami-m parametric imaging. Among different imaging methods, KNN-based Shannon entropy (KSE) imaging achieved the higher accuracy in classification of benign and malignant breast tumors and KNN-based CRE imaging had larger lesion-to-normal contrast when monitoring the ablated areas during MWA at different powers and treatment durations. Ultrasound KNN entropy imaging is a potential quantitative ultrasound approach for tissue characterization.


Subject(s)
Algorithms , Breast Neoplasms , Animals , Swine , Humans , Female , Computer Simulation , Entropy , Ultrasonography/methods
12.
Cogn Neurodyn ; 18(1): 265-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406204

ABSTRACT

Low-voltage fast (LVF) seizure-onset is one of the two frequently observed temporal lobe seizure-onset patterns. Depth electroencephalogram profile analysis illustrated that the peak amplitude of LVF onset was deep temporal areas, e.g., hippocampus. However, the specific dynamic transition mechanisms between normal hippocampal rhythmic activity and LVF seizure-onset remain unclear. Recently, the optogenetic approach to gain control over epileptic hyper-excitability both in vitro and in vivo has become a novel noninvasive modulation strategy. Here, we combined biophysical modeling to study LVF dynamics following changes in crucial physiological parameters, and investigated the potential optogenetic intervention mechanism for both excitatory and inhibitory control. In an Ammon's horn 3 (CA3) biophysical model with light-sensitive protein channelrhodopsin 2 (ChR2), we found that the cooperative effects of excessive extracellular potassium concentration of parvalbumin-positive (PV+) inhibitory interneurons and synaptic links could induce abundant types of discharges of the hippocampus, and lead to transitions from gamma oscillations to LVF seizure-onset. Simulations of optogenetic stimulation revealed that the LVF seizure-onset and morbid fast spiking could not be eliminated by targeting PV+ neurons, whereas the epileptic network was more sensitive to the excitatory control of principal neurons with strong optogenetic currents. We illustrate that in the epileptic hippocampal network, the trajectories of the normal and the seizure state are in close vicinity and optogenetic perturbations therefore may result in transitions. The network model system developed in this study represents a scientific instrument to disclose the underlying principles of LVF, to characterize the effects of optogenetic neuromodulation, and to guide future treatment for specific types of seizures.

13.
Diagnostics (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275462

ABSTRACT

Computed tomography (CT)-guided thermal ablation is an emerging treatment method for lung tumors. Ablation needle path planning in preoperative diagnosis is of critical importance. In this work, we proposed an automatic needle path-planning method for thermal lung tumor ablation. First, based on the improved cube mapping algorithm, binary classification was performed on the surface of the bounding box of the patient's CT image to obtain a feasible puncture area that satisfied all hard constraints. Then, for different clinical soft constraint conditions, corresponding grayscale constraint maps were generated, respectively, and the multi-objective optimization problem was solved by combining Pareto optimization and weighted product algorithms. Finally, several optimal puncture paths were planned within the feasible puncture area obtained for the clinicians to choose. The proposed method was evaluated with 18 tumors of varying sizes (482.79 mm3 to 9313.81 mm3) and the automatically planned paths were compared and evaluated with manually planned puncture paths by two clinicians. The results showed that over 82% of the paths (74 of 90) were considered reasonable, with clinician A finding the automated planning path superior in 7 of 18 cases, and clinician B in 9 cases. Additionally, the time efficiency of the algorithm (35 s) was much higher than that of manual planning. The proposed method is expected to aid clinicians in preoperative path planning for thermal ablation of lung tumors. By providing a valuable reference for the puncture path during preoperative diagnosis, it may reduce the clinicians' workload and enhance the objectivity and rationality of the planning process, which in turn improves the effectiveness of treatment.

14.
Rev Neurosci ; 35(2): 121-139, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37419866

ABSTRACT

Alzheimer's disease (AD) is a complex form of dementia and due to its high phenotypic variability, its diagnosis and monitoring can be quite challenging. Biomarkers play a crucial role in AD diagnosis and monitoring, but interpreting these biomarkers can be problematic due to their spatial and temporal heterogeneity. Therefore, researchers are increasingly turning to imaging-based biomarkers that employ data-driven computational approaches to examine the heterogeneity of AD. In this comprehensive review article, we aim to provide health professionals with a comprehensive view of past applications of data-driven computational approaches in studying AD heterogeneity and planning future research directions. We first define and offer basic insights into different categories of heterogeneity analysis, including spatial heterogeneity, temporal heterogeneity, and spatial-temporal heterogeneity. Then, we scrutinize 22 articles relating to spatial heterogeneity, 14 articles relating to temporal heterogeneity, and five articles relating to spatial-temporal heterogeneity, highlighting the strengths and limitations of these strategies. Furthermore, we discuss the importance of understanding spatial heterogeneity in AD subtypes and their clinical manifestations, biomarkers for abnormal orderings and AD stages, the recent advancements in spatial-temporal heterogeneity analysis for AD, and the emerging role of omics data integration in advancing personalized diagnosis and treatment for AD patients. By emphasizing the significance of understanding AD heterogeneity, we hope to stimulate further research in this field to facilitate the development of personalized interventions for AD patients.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Brain/diagnostic imaging , Neuroimaging , Biomarkers
15.
Diagnostics (Basel) ; 13(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38132230

ABSTRACT

In this paper, we present the kernel density estimation (KDE)-based parallelized ultrasound entropy imaging and apply it for hepatic steatosis characterization. A KDE technique was used to estimate the probability density function (PDF) of ultrasound backscattered signals. The estimated PDF was utilized to estimate the Shannon entropy to construct parametric images. In addition, the parallel computation technique was incorporated. Clinical experiments of hepatic steatosis were conducted to validate the feasibility of the proposed method. Seventy-two participants and 204 patients with different grades of hepatic steatosis were included. The experimental results show that the KDE-based entropy parameter correlates with log10 (hepatic fat fractions) measured by magnetic resonance spectroscopy in the 72 participants (Pearson's r = 0.52, p < 0.0001), and its areas under the receiver operating characteristic curves for diagnosing hepatic steatosis grades ≥ mild, ≥moderate, and ≥severe are 0.65, 0.73, and 0.80, respectively, for the 204 patients. The proposed method overcomes the drawbacks of conventional histogram-based ultrasound entropy imaging, including limited dynamic ranges and histogram settings dependence, although the diagnostic performance is slightly worse than conventional histogram-based entropy imaging. The proposed KDE-based parallelized ultrasound entropy imaging technique may be used as a new ultrasound entropy imaging method for hepatic steatosis characterization.

16.
Brain Sci ; 13(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38137099

ABSTRACT

In the realm of cognitive science, the phenomenon of "successful cognitive aging" stands as a hallmark of individuals who exhibit cognitive abilities surpassing those of their age-matched counterparts. However, it is paramount to underscore a significant gap in the current research, which is marked by a paucity of comprehensive inquiries that deploy substantial sample sizes to methodically investigate the cerebral biomarkers and contributory elements underpinning this cognitive success. It is within this context that our present study emerges, harnessing data derived from the UK Biobank. In this study, a highly selective cohort of 1060 individuals aged 65 and above was meticulously curated from a larger pool of 17,072 subjects. The selection process was guided by their striking cognitive resilience, ascertained via rigorous evaluation encompassing both generic and specific cognitive assessments, compared to their peers within the same age stratum. Notably, the cognitive abilities of the chosen participants closely aligned with the cognitive acumen commonly observed in middle-aged individuals. Our study leveraged a comprehensive array of neuroimaging-derived metrics, obtained from three Tesla MRI scans (T1-weighted images, dMRI, and resting-state fMRI). The metrics included image-derived phenotypes (IDPs) that addressed grey matter morphology, the strength of brain network connectivity, and the microstructural attributes of white matter. Statistical analyses were performed employing ANOVA, Mann-Whitney U tests, and chi-square tests to evaluate the distinctive aspects of IDPs pertinent to the domain of successful cognitive aging. Furthermore, these analyses aimed to elucidate lifestyle practices that potentially underpin the maintenance of cognitive acumen throughout the aging process. Our findings unveiled a robust and compelling association between heightened cognitive aptitude and the integrity of white matter structures within the brain. Furthermore, individuals who exhibited successful cognitive aging demonstrated markedly enhanced activity in the cerebral regions responsible for auditory perception, voluntary motor control, memory retention, and emotional regulation. These advantageous cognitive attributes were mirrored in the health-related lifestyle choices of the surveyed cohort, characterized by elevated educational attainment, a lower incidence of smoking, and a penchant for moderate alcohol consumption. Moreover, they displayed superior grip strength and enhanced walking speeds. Collectively, these findings furnish valuable insights into the multifaceted determinants of successful cognitive aging, encompassing both neurobiological constituents and lifestyle practices. Such comprehensive comprehension significantly contributes to the broader discourse on aging, thereby establishing a solid foundation for the formulation of targeted interventions aimed at fostering cognitive well-being among aging populations.

17.
Diagnostics (Basel) ; 13(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761378

ABSTRACT

It is rare to use the one-stage model without segmentation for the automatic detection of coronary lesions. This study sequentially enrolled 200 patients with significant stenoses and occlusions of the right coronary and categorized their angiography images into two angle views: The CRA (cranial) view of 98 patients with 2453 images and the LAO (left anterior oblique) view of 176 patients with 3338 images. Randomization was performed at the patient level to the training set and test set using a 7:3 ratio. YOLOv5 was adopted as the key model for direct detection. Four types of lesions were studied: Local Stenosis (LS), Diffuse Stenosis (DS), Bifurcation Stenosis (BS), and Chronic Total Occlusion (CTO). At the image level, the precision, recall, mAP@0.1, and mAP@0.5 predicted by the model were 0.64, 0.68, 0.66, and 0.49 in the CRA view and 0.68, 0.73, 0.70, and 0.56 in the LAO view, respectively. At the patient level, the precision, recall, and F1scores predicted by the model were 0.52, 0.91, and 0.65 in the CRA view and 0.50, 0.94, and 0.64 in the LAO view, respectively. YOLOv5 performed the best for lesions of CTO and LS at both the image level and the patient level. In conclusion, the one-stage model without segmentation as YOLOv5 is feasible to be used in automatic coronary lesion detection, with the most suitable types of lesions as LS and CTO.

18.
Ultrasonics ; 135: 107093, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37482038

ABSTRACT

The evaluation of pediatric hepatic steatosis and early detection of fatty liver in children are of critical importance. In this paper, a deep learning model based on the convolutional neural network (CNN) of ultrasound backscattered signals, multi-branch residual network (MBR-Net), was proposed for characterizing pediatric hepatic steatosis. The MBR-Net was composed of three convolutional branches. Each branch used different sizes of convolution blocks to enhance the capability of local feature acquisition, and leveraged the residual mechanism with skip connections to guide the network to effectively capture features. A total of 393 frames of ultrasound backscattered signals collected from 131 children were included in the experiments. The hepatic steatosis index was used as the reference standard for diagnosing the steatosis grade, G0-G3. The ultrasound backscattered signals within the liver region of interests (ROIs) were normalized and augmented using a sliding gate method. The gated ROI signals were randomly divided into training, validation, and test sets with the ratio of 8:1:1. The area under the operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) were used as the evaluation metrics. Experimental results showed that the MBR-Net yields AUCs for diagnosing pediatric hepatic steatosis grade ≥G1, ≥G2, and ≥G3 of 0.94 (ACC: 93.65%; SEN: 89.79%; SPE: 84.48%), 0.93 (ACC: 90.48%; SEN: 87.75%; SPE: 82.65%), and 0.93 (ACC: 87.76%; SEN: 84.84%; SPE: 86.55%), respectively, which were superior to the conventional one-branch CNNs without residual mechanisms. The proposed MBR-Net can be used as a new deep learning method for ultrasound backscattered signal analysis to characterize pediatric hepatic steatosis.


Subject(s)
Fatty Liver , Humans , Child , Fatty Liver/diagnostic imaging , Ultrasonography/methods , Neural Networks, Computer
19.
Neurobiol Aging ; 128: 49-64, 2023 08.
Article in English | MEDLINE | ID: mdl-37163923

ABSTRACT

The cognitive reserve (CR) hypothesis is reinforced by negative moderating effects, suggesting that those with higher CR are less reliant on brain structure for cognitive function. Previous research on CR's moderating effects yielded inconsistent results, motivating our 3 studies using UK Biobank data. Study I examined five CR proxies' moderating effects on global, lobar, and regional brain-cognition models; study II extended study I by using a larger sample size; and study III investigated age-related moderating effects on the hippocampal regions. In study I, most moderating effects were negative and none survived the multiple comparison correction, but study II identified 13 global-level models with significant negative moderating effects that survived correction. Study III showed age influenced CR proxies' moderating effects in hippocampal regions. Our findings suggest that the effects of CR proxies on brain integrity and cognition varied depending on the proxy used, brain integrity indicators, cognitive domain, and age group. This study offers significant insights regarding the importance of CR for brain integrity and cognitive outcomes.


Subject(s)
Cognitive Reserve , Neuropsychological Tests , Cognition , Brain
20.
Sci Rep ; 13(1): 5750, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029214

ABSTRACT

Accurately diagnosing of Alzheimer's disease (AD) and its early stages is critical for prompt treatment or potential intervention to delay the the disease's progression. Convolutional neural networks (CNNs) models have shown promising results in structural MRI (sMRI)-based diagnosis, but their performance, particularly for 3D models, is constrained by the lack of labeled training samples. To address the overfitting problem brought on by the insufficient training sample size, we propose a three-round learning strategy that combines transfer learning with generative adversarial learning. In the first round, a 3D Deep Convolutional Generative Adversarial Networks (DCGAN) model was trained with all available sMRI data to learn the common feature of sMRI through unsupervised generative adversarial learning. The second round involved transferring and fine-tuning, and the pre-trained discriminator (D) of the DCGAN learned more specific features for the classification task between AD and cognitively normal (CN). In the final round, the weights learned in the AD versus CN classification task were transferred to the MCI diagnosis. By highlighting brain regions with high prediction weights using 3D Grad-CAM, we further enhanced the model's interpretability. The proposed model achieved accuracies of 92.8%, 78.1%, and 76.4% in the classifications of AD versus CN, AD versus MCI, and MCI versus CN, respectively. The experimental results show that our proposed model avoids overfitting brought on by a paucity of sMRI data and enables the early detection of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Learning , Brain/diagnostic imaging , Overweight , Cognitive Dysfunction/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...