Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1663-1674, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31423645

ABSTRACT

Deoxynivalenol (DON) is a toxic secondary metabolite produced by Fusarium graminearum. It is one of the most common feed contaminants that poses a serious threat to the health and performance of dairy cows. This study investigated the in vitro cytotoxicity of DON on bovine mammary epithelial cells (MAC-T). DON at different concentrations (0.25, 0.3, 0.5, 0.8, 1 or 2 µg/ml) inhibited the growth of MAC-T cells after 24 hr of exposure (p < .001). DON at 0.25 µg/ml increased lactate dehydrogenase (LDH) leakage (p < .05); decreased glutathione (GSH) levels (p < .001), total superoxide dismutase (T-SOD) activity and total antioxidant capacity (T-AOC; p < .01); and increased malondialdehyde (MDA) concentration (p < .01) in MAC-T cells after 24 hr of exposure. We also observed that DON increased reactive oxygen species (ROS) levels in cells incubated for 9, 15 and 24 hr (p < .001). DON at 0.25 µg/ml triggered oxidative damage in MAC-T cells. Furthermore, it induced an inflammatory response in the cells incubated for 9, 15 and 24 hr (p < .05) by increasing the mRNA expression levels of nuclear factor kappa B, myeloid differentiation factor 88 (MyD88), tumour necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, cyclooxygenase-2 and IL-8. We further examined the effect of DON on apoptosis. DON prevented normal proliferation of MAC-T cells by blocked cell cycle progression in 24 hr (p < .001). In addition, the apoptosis rate measured using annexin V-FITC significantly increased (p < .05) with increase in the mRNA expression level of Bax (p < .01) and increase in the Bax/Bcl-2 ratio (p < .01) in cells incubated for 24 hr. In summary, DON exerts toxic effects in MAC-T cells by causing oxidative stress, inducing an inflammatory response, affecting cell cycle and leading to apoptosis.


Subject(s)
Apoptosis/drug effects , Cattle , Epithelial Cells/drug effects , Inflammation/veterinary , Oxidative Stress/drug effects , Trichothecenes/pharmacology , ATP-Binding Cassette Transporters/metabolism , Animals , Annexin A5/metabolism , Antioxidants/metabolism , Cell Cycle/drug effects , Cell Line , Cell Survival , Epithelial Cells/physiology , Female , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Malondialdehyde/metabolism , Mammary Glands, Animal , Periplasmic Binding Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...