Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Divers ; 45(3): 337-346, 2023 May.
Article in English | MEDLINE | ID: mdl-37397600

ABSTRACT

Verticillium wilt, caused by Verticillium dahliae, seriously restricts the yield and quality improvement of cotton. Previous studies have revealed the involvement of WRKY members in plant defense against V. dahliae, but the underlying mechanisms involved need to be further elucidated. Here, we demonstrated that Gossypium hirsutum WRKY DNA-binding protein 33 (GhWRKY33) functions as a negative regulator in plant defense against V. dahliae. GhWRKY33 expression is induced rapidly by V. dahliae and methyl jasmonate, and overexpression of GhWRKY33 reduces plant tolerance to V. dahliae in Arabidopsis. Quantitative RT-PCR analysis revealed that expression of several JA-associated genes was significantly repressed in GhWRKY33 overexpressing transgenic plants. Yeast one-hybrid analysis revealed that GhWRKY33 may repress the transcription of both AtERF1 and GhERF2 through its binding to their promoters. Protein-protein interaction analysis suggested that GhWRKY33 interacts with G. hirsutum JASMONATE ZIM-domain protein 3 (GhJAZ3). Similarly, overexpression of GhJAZ3 also decreases plant tolerance to V. dahliae. Furthermore, GhJAZ3 acts synergistically with GhWRKY33 to suppress both AtERF1 and GhERF2 expression. Our results imply that GhWRKY33 may negatively regulate plant tolerance to V. dahliae via the JA-mediated signaling pathway.

2.
Cells ; 11(15)2022 07 29.
Article in English | MEDLINE | ID: mdl-35954172

ABSTRACT

WRKY transcription factors play critical roles in the modulation of transcriptional changes during leaf senescence, but the underlying mechanisms controlled by them in this progress still remain enigmatic. In this study, Gossypium hirsutum WRKY DNA-binding protein 33 (GhWRKY33) was characterized as a negative regulator of both ageing and JA-mediated leaf senescence. The overexpression of GhWRKY33 in Arabidopsis greatly delayed leaf senescence, as determined by elevated chlorophyll content, lower H2O2 content, and reduced expression of several senescence-associated genes (SAGs). An electrophoretic mobility shift assay (EMSA) and transient dual-luciferase reporter assay revealed that GhWRKY33 could bind to the promoters of both AtSAG12 and Ghcysp and suppress their expression. Yeast two-hybrid (Y2H) and firefly luciferase complementation imaging (LUC) assays showed that GhWRKY33 could interact with GhTIFY10A. Similarly, the overexpression of GhTIFY10A in Arabidopsis also dramatically delayed leaf senescence. Furthermore, both GhWRKY33 and GhTIFY10A negatively regulate JA-mediated leaf senescence. In addition, a transientdual-luciferase reporter assay indicated that GhWRKY33 and GhTIFY10A could function synergistically to inhibit the expression of both AtSAG12 and Ghcysp. Thus, our work suggested that GhWRKY33 may function as a negative regulator to modulate both ageing and JA-mediated leaf senescence and also contributes to a basis for further functional studies on cotton leaf senescence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Hydrogen Peroxide/metabolism , Plant Leaves/metabolism , Plant Senescence
3.
Plant Divers ; 44(1): 109-115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35281129

ABSTRACT

The phytochrome B mediated light signaling integrates with various phytohormone signalings to control plant immune response. However, it is still unclear whether phyB-mediated light signaling has an effect on the biosynthesis of jasmonate during plant defense response against Botrytis cinerea. In this study, we demonstrated that phyB-mediated light signaling has a role in this process. Initially, we confirmed that phyb plants were obviously less resistant to B. cinerea while phyB overexpressing plants showed significantly enhanced resistance. We also found that the expression of numerous JA biosynthesis genes was promoted upon treatment with red or white light when compared to that of darkness, and that this promotion is dependent on phyB. Consistent with the gene expression results, phyb plants accumulated reduced pool of JA-Ile, indicating that phyB-mediated light signaling indeed increased JA biosynthesis. Further genetic analysis showed that light-mediated JAZ9 degradation and phyB-enhanced resistance were dependent on the receptor COI1, and that pif1/3/4/5 (pifq) can largely rescue the severe symptom of phyb. Taken together, our study demonstrates that phyB may participate in plant defense against B. cinerea through the modulation of the biosynthesis of JA.

4.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641344

ABSTRACT

The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.


Subject(s)
Antioxidants/metabolism , Citrus/chemistry , Flavonoids/metabolism , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Citrus/classification , Crops, Agricultural/chemistry , Flavonoids/chemistry , Health Promotion , Plant Breeding , Plant Proteins/genetics
5.
Plant Divers ; 43(4): 331-340, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34485776

ABSTRACT

WRKY transcription factors play essential roles during leaf senescence. However, the mechanisms by which they regulate this process remains largely unknown. Here, we identified the transcription factor WRKY75 as a positive regulator during leaf senescence. Mutations of WRKY75 caused a delay in age-triggered leaf senescence, whereas overexpression of WRKY75 markedly accelerated this process. Expression of senescence-associated genes (SAGs) was suppressed in WRKY75 mutants but increased in WRKY75-overexpressing plants. Further analysis demonstrated that WRKY75 directly associates with the promoters of SAG12 and SAG29, to activate their expression. Conversely, GAI and RGL1, two DELLA proteins, can suppress the WRKY75-mediated activation, thereby attenuating SAG expression during leaf senescence. Genetic analyses showed that GAI gain-of-function or RGL1 overexpression can partially rescue the accelerated senescence phenotype caused by WRKY75 overexpression. Furthermore, WRKY75 can positively regulate WRKY45 expression during leaf senescence. Our data thus imply that WRKY75 may positively modulate age-triggered leaf senescence through the gibberellin-mediated signaling pathway.

6.
Plants (Basel) ; 9(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967288

ABSTRACT

Endogenous and exogenous signals are perceived and integrated by plants to precisely control defense responses. As a crucial environmental cue, light reportedly plays vital roles in plant defenses against necrotrophic pathogens. Phytochrome-interacting factor (PIF) is one of the important transcription factors which plays essential roles in photoreceptor-mediated light response. In this study, we revealed that PIFs negatively regulate plant defenses against Botrytis cinerea. Gene expression analyses showed that the expression level of a subset of defense-response genes was higher in pifq (pif1/3/4/5) mutants than in the wild-type control, but was lower in PIF-overexpressing plants. Chromatin immunoprecipitation assays proved that PIF4/5 binds directly to the ETHYLENE RESPONSE FACTOR1 (ERF1) promoter. Moreover, genetic analyses indicated that the overexpression of ERF1 dramatically rescues the susceptibility of PIF4-HA and PIF5-GFP transgenic plants, and that PIF controls the resistance to B. cinerea in a COI1- and EIN2-dependent manner. Our results provide compelling evidence that PIF, together with the jasmonate/ethylene pathway, is important for plant resistance to B. cinerea.

SELECTION OF CITATIONS
SEARCH DETAIL
...