Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674138

ABSTRACT

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Subject(s)
Coleoptera , Insect Proteins , Receptors, Odorant , Transcriptome , Animals , Coleoptera/genetics , Coleoptera/metabolism , Coleoptera/growth & development , Male , Female , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Profiling , Arthropod Antennae/metabolism , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism
2.
Sci Total Environ ; 912: 169531, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38145666

ABSTRACT

The continuous use of chemical pesticides to control nematodes could result in the developing of pesticide-resistant nematodes. Novel nucleic acid pesticides are becoming the focus of pesticide research due to their strong specificity, high efficiency, and environmental friendliness. However, the limited known biochemical targets restrict the development of target pesticides for nematodes. The calcium stress experiments on pine wood nematodes (PWN) showed that 100 mmol/L Ca2+ resulted in longitudinal depression on the PWN body wall, reduced oviposition, and increased corrected mortality. To enrich the biological targets of nematode pesticides, we further investigated the response mechanism of PWN to calcium stress at the molecular level. Differentially expressed gene analysis showed that genes involved in the oxidative phosphorylation (OXPHOS) pathway were significantly enriched. RNA interference results of 6 key genes belonging to four mitochondrial complex I (BXNDUFA2), III (BXQCR8), IV (BXCOX17), V (BXV-ATPaseB, BXV-ATPaseE, BXV-ATPaseε) in non-stressed nematodes showed reduction in PWN oviposition, population size, feeding ability, and pathogenicity. The BXNDUFA2 gene interference had the highest inhibitory impact by decreasing the oviposition from 31.00 eggs to 6.75 eggs and PWN population size from 8.27 × 103 nematodes to 1.64 × 103 nematodes, respectively. Interestingly, RNA interference of these 6 key genes in calcium-stressed nematodes also led to increased mortality and decreased oviposition of PWN. In summary, calcium stress inhibited the reproductive capacity of PWN by down-regulating key genes BXNDUFA2, BXQCR8, BXV-ATPaseB, BXV-ATPaseE, BXV-ATPaseε, and BXCOX17, thereby reducing the pathogenicity. The current results enrich the RNAi targets in PWN and provide a scientific basis for developing novel nucleic nematicides.


Subject(s)
Nematoda , Pesticides , Pinus , Tylenchida , Animals , Virulence , Calcium , Xylophilus , Oxidative Phosphorylation , Plant Diseases , Tylenchida/genetics
3.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139394

ABSTRACT

Knottin-type antimicrobial peptides possess exceptional attributes, such as high efficacy, low vulnerability to drug resistance, minimal toxicity, and precise targeting of drug sites. These peptides play a crucial role in the innate immunity of insects, offering protection against bacteria, fungi, and parasites. Knottins have garnered considerable interest as promising contenders for drug development due to their ability to bridge the gap between small molecules and protein-based biopharmaceuticals, effectively addressing the therapeutic limitations of both modalities. This work presents the isolation and identification of a novel antimicrobial peptide derived from Monochamus alternatus. The cDNA encodes a 56-amino acid knottin propeptide, while the mature peptide comprises only 34 amino acids. We have labeled this knottin peptide as MaK. Using chemically synthesized MaK, we evaluated its hemolytic activity, thermal stability, antibacterial properties, and efficacy against nematodes. The results of this study indicate that MaK is an exceptionally effective knottin-type peptide. It demonstrates low toxicity, superior stability, potent antibacterial activity, and the ability to suppress pine wood nematodes. Consequently, these findings suggest that MaK has potential use in developing innovative therapeutic agents to prevent and manage pine wilt disease.


Subject(s)
Coleoptera , Cystine-Knot Miniproteins , Nematoda , Animals , Cystine-Knot Miniproteins/pharmacology , Antimicrobial Peptides , Coleoptera/genetics , Anti-Bacterial Agents/pharmacology
4.
Mitochondrial DNA B Resour ; 8(10): 1045-1048, 2023.
Article in English | MEDLINE | ID: mdl-37818206

ABSTRACT

Batocera rubus severely impacts on the health of banyan trees. In this study, the whole mitochondrial genome for B. rubus was found to be 16,158 bp with a GC content of 23.9%, including 39.1% A, 37.0% T, 14.8% C, and 9.1% G. This genome contains 13 protein-coding genes, 22 tRNAs, and two rRNAs. Phylogenetic analysis revealed that B. rubus is close to Batocera celebiana. This study provides valuable information that can help improve the classification and phylogeny of B. rubus and facilitate further evolutionary studies.

5.
Pestic Biochem Physiol ; 194: 105511, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532327

ABSTRACT

Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.


Subject(s)
Coleoptera , Nematoda , Pinus , Tylenchida , Animals , Reactive Oxygen Species , Plant Diseases , Oxidative Stress , Antinematodal Agents/pharmacology , Signal Transduction , Reproduction , Tylenchida/genetics , Defensins
6.
Pestic Biochem Physiol ; 194: 105495, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532354

ABSTRACT

Overcoming the innate immunity of insects is a key process to improve the efficiency of biological control. Antimicrobial peptides (AMPs) are important effectors in insect innate immunity, usually mediating resistance to pathogenic microorganisms through Toll and IMD signaling pathways. This study investigated the effect of key genes on upstream immune recognition receptor (GNBP3) and downstream effectors (AMPs) by RNAi technology. The transcriptome KEGG enrichment analysis and differential gene annotation results showed that the immune response genes MaltSpz and MaltRelish are important regulators of Toll and IMD signaling pathways, respectively. Both dsSpz and dsRelish could affect AMP gene expression and increase the expression of the immune recognition receptor MaltGNBP3. Moreover, they significantly reduce the survival rate of Monochamus alternatus and promote hyphal growth after Beauveria bassiana infection. This helps to improve the biological control effect of B. bassiana, control the population of vector insects and cut off the transmission route of pine wood nematode. The combined MaltSpz and MaltRelish knockdown increased the infection rate of M. alternatus larvae from 20.69% to 83.93%, achieving the best efficiency in synergistic B. bassiana infection. Our results showed important roles of MaltRelish- and MaltSpz-mediated regulation of AMP genes function in insect entomopathogenic fungi tolerance and induced significant mortality in larvae. Based on this study, MaltSpz and MaltRelish could represent candidate gene targets for the biological control of M. alternatus by RNAi.


Subject(s)
Beauveria , Coleoptera , Animals , Coleoptera/genetics , Larva , Pest Control , Gene Expression Profiling
7.
Bull Entomol Res ; 113(5): 615-625, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37466033

ABSTRACT

Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.


Subject(s)
Bacillus thuringiensis , Coleoptera , Weevils , Humans , Animals , Coleoptera/metabolism , Weevils/metabolism , CD13 Antigens/metabolism , Endotoxins/metabolism , Endotoxins/toxicity , Larva/metabolism , Hemolysin Proteins/metabolism , Hemolysin Proteins/toxicity , Bacterial Proteins/metabolism , Bacterial Proteins/toxicity
8.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982491

ABSTRACT

Insects have evolved to form a variety of complex natural compounds to prevent pathogen infection in the process of a long-term attack and defense game with various pathogens in nature. Antimicrobial Peptides (AMPs) are important effector molecules of the insect immune response to the pathogen invasion involved in bacteria, fungi, viruses and nematodes. The discovery and creation of new nematicides from these natural compounds is a key path to pest control. A total of 11 AMPs from Monochamus alternatus were classified into 3 categories, including Attacin, Cecropin and Defensin. Four AMP genes were successfully expressed by Komagataella phaffii KM71. The bioassay results showed that the exogenous expressed AMPs represented antimicrobial activity against Serratia (G-), Bacillus thuringiensis (G+) and Beauveria bassiana and high nematicide activity against Bursaphelenchus xylophilus. All four purified AMPs' protein against B. xylophilus reached LC50 at 3 h (LC50 = 0.19 mg·mL-1 of MaltAtt-1, LC50 = 0.20 mg·mL-1 of MaltAtt-2 and MaltCec-2, LC50 = 0.25 mg·mL-1 of MaltDef-1). Furthermore, the AMPs could cause significant reduction of the thrashing frequency and egg hatching rate, and the deformation or fracture of the body wall of B. xylophilus. Therefore, this study is a foundation for further study of insect biological control and provides a theoretical basis for the research and development of new insecticidal pesticides.


Subject(s)
Coleoptera , Rhabditida , Animals , Coleoptera/genetics , Insecta , Antinematodal Agents/pharmacology , Peptides
9.
Pest Manag Sci ; 79(6): 2230-2238, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36756723

ABSTRACT

BACKGROUND: Pine wilt disease (PWD) is a destructive disease of pine trees caused by the pinewood nematode, Bursaphelenchus xylophilus. Fluopyram, a novel nematicide compound with systemic activity, is a prospective trunk-injection agent against pinewood nematodes. The disadvantage of current trunk-injection agents is that they were not evenly distributed in tree tissues and were poor in the persistence of effect and efficiency. Therefore, we investigated the spatiotemporal transport pattern and residue behavior of fluopyram following its injection into the trunk of Pinus massoniana. RESULTS: Fluopyram transport in the trunk occurred through radial diffusion and vertical uptake within 1 week of the injection, reaching all tissues of P. massoniana, including apical branches and needles. Three years after the field test, the infection of PWD declined substantially with treatment using the fluopyram trunk-injection agent, which demonstrated 100% efficacy in both the mild and moderate occurrence areas, and 71.1% efficacy in the severe occurrence area. Fluopyram as trunk-injection agent exerted substantial control over PWD, with its efficacy being influenced by the infection time of PWD. The half-life of 10% fluopyram in treated pine trees was 346.6 days with 3-year persistence. CONCLUSION: The advantages of overall distribution and long persistence of fluopyram in the tree after injection help explain its evident efficacy against PWN. Overall, fluopyram trunk-injection has potential to prevent PWD. © 2023 Society of Chemical Industry.


Subject(s)
Pinus , Prospective Studies , Antinematodal Agents , Benzamides , Plant Diseases/prevention & control
10.
Pest Manag Sci ; 79(1): 437-446, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36177945

ABSTRACT

BACKGROUND: Diapause allows insects to survive harsh environments, and its termination is crucial for their normal development after diapause. However, little is known about the regulatory pathways and signals involved in insect diapause termination. RESULTS: We discovered that high temperature (25 °C) influenced larval diapause termination in Monochamus alternatus. Likewise, metal ions (Ca2+ ) promoted diapause termination by reducing diapause duration. We combined transcriptomic and metabolomic analyses to investigate changes in gene expression and metabolism in diapause-terminated larvae treated with high temperature (MaHt) and metal ions (MaCa). Hormone biosynthesis and metabolism contained the highest proportion of significant differentially expressed genes (DEGs) in the two groups. 20-hydroxyecdysone (20E) and juvenile hormone (JH) were closely related to diapause termination in M. alternatus. RNA interference (RNAi) experiments verified that 20E biosynthesis (CYP314a1) and degradation (CYP18a1), JH biosynthesis (FOHSDR-1) and degradation (JHEH) genes affected the larval diapause duration significantly. In addition, dysfunction of CYP314a1 resulted in increased larval mortality (P < 0.01), reduced pupation rate and emergence rate (P < 0.05). Enzyme-linked immunosorbent assay (ELISA) analysis showed that the ecdysone content decreased after dsCYP314a1 injection and JH content increased after dsJHEH injection. CONCLUSION: The results indicate that genes CYP314a1, CYP18a1, FOHSDR-1 and JHEH mediated 20E and JH biosynthesis and degradation to regulate diapause termination in M. alternatus. We elucidated the molecular mechanism underlying the regulation of diapause termination and provided a basis for the prevention and control of M. alternatus infestation. © 2022 Society of Chemical Industry.


Subject(s)
Ecdysterone , Juvenile Hormones , Animals , Ecdysterone/pharmacology , Juvenile Hormones/pharmacology , Larva/genetics , Metabolomics
11.
Mitochondrial DNA B Resour ; 7(11): 1955-1956, 2022.
Article in English | MEDLINE | ID: mdl-36406823

ABSTRACT

Arhopalus oberthuri is a pest which spreads in China, Laos, Japan and some other countries in Asia. The complete mitochondrial genome of A. oberthuri is 15,854 bp in length with 32.1% GC content, including 38.2% A, 20.4% C, 11.7% G, 29.7% T. There are 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA) and two ribosomal RNA genes (rRNA) encoded in the genome. The graph of phylogenetic analysis gives the information that Arhopalus oberthuri is closer to Arhopalus unicolor. This study provided a scientific basis for the population genetics, phylogeny, and molecular taxonomy of A. oberthuri.

12.
Mitochondrial DNA B Resour ; 7(9): 1746-1748, 2022.
Article in English | MEDLINE | ID: mdl-36213868

ABSTRACT

Priotyrannus closteroides Thomson, 1877 (Coleoptera: Cerambycidae) is the trunk borer of orange trees. In this study, we sequenced and annotated the whole mitochondrial genome of P. closteroides. The results showed that the length of the complete mitochondrial genome is 15,854 bp with an overall GC content of 32.11%. The genome encodes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs). The relevant phylogenetic tree distinctly showed that P. closteroides is clustered with Dorysthenes paradoxus and Dorysthenes granulosus. This study provides a piece of valuable genomic information for the population genetics, evolution, and classification of P. closteroides.

13.
Mitochondrial DNA B Resour ; 7(8): 1571-1573, 2022.
Article in English | MEDLINE | ID: mdl-36051368

ABSTRACT

Chalcophora japonica chinensis Schaufuss, 1879 (Coleoptera: Buprestidae) is a common pine pest in Chongqing, Fujian, Yunnan, and other in China. The mitochondrial genome of C. japonica is 15,759 bp in size. The genome includes 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs). The overall GC content of the mitogenome is 32.0%. The results showed that C. japonica was most related to Chrysochroa fulgidissima, Trachys variolaris, and Agrilus mali. The full mitochondrial genome of C. japonica is now available, allowing researchers to better understand the species' genetic evolution and regulatory strategies.

14.
J Invertebr Pathol ; 189: 107726, 2022 03.
Article in English | MEDLINE | ID: mdl-35122837

ABSTRACT

The pine wilt disease is caused by the pinewood nematode Bursaphelenchus xylophilus and it results in serious ecological and economic losses. Therefore, effective prevention and control methods for the pinewood nematode are urgently required. Bacillus thuringiensis (Bt), a widely used microbial insecticide, produces toxins that are toxic to several species of parasitic nematodes, however, its effects on B. xylophilus have not been determined. In this study, Cry5Ba3, App6Aa2, Cry12Aa1, Cry13Aa1, Cry14Aa1, Cry21Aa3, Cry21Fa1, Xpp55Aa1, and Cyt8Aa1 toxins' nematocidal activity against B. xylophilus was evaluated, six toxins with high toxicity were identified: App6Aa2 (LC50 = 49.71 µg/mL), Cry13Aa1 (LC50 = 53.17 µg/mL), Cry12Aa1 (LC50 = 58.88 µg/mL), Cry5Ba3 (LC50 = 63.99 µg/mL), Xpp55Aa1 (LC50 = 65.14 µg/mL), and Cyt8Aa1 (LC50 = 96.50 µg/mL). The six toxins caused shrinkage and thinning of the intestinal cells, contraction of the intestine from the body wall, vacuolization, and degenerated appearance of the pinewood nematodes. The results of this study provide basic information to study the action mechanism of nematocidal toxins on the pinewood nematode and direction for the use of nematocidal toxins in the biological control of B. xylophilus.


Subject(s)
Pinus , Rhabditida , Animals , Antinematodal Agents/pharmacology , Bacillus thuringiensis Toxins , Pinus/parasitology , Xylophilus
15.
Mitochondrial DNA B Resour ; 7(1): 264-265, 2022.
Article in English | MEDLINE | ID: mdl-35097209

ABSTRACT

Pheropsophus occipitalis MacLeay is a predatory enemy prey heavily on agricultural pests. The length of the complete mitochondrial genome of P. occipitalis was 16,800 bp with 20.4% GC content, including 41.2% A, 11.9% C, 8.4% G, 38.5% T. The genome encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), two ribosomal RNA genes (rRNA). Phylogenetic analysis showed that P. occipitalis was clustered with Pheropsophus bimaculatus and Pheropsophus sobrinus. This study provided a scientific basis for the population genetics, phylogeny, and molecular taxonomy of P. occipitalis.

16.
J Econ Entomol ; 114(6): 2406-2411, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34693979

ABSTRACT

The red palm weevil (RPW), Rhynchophorus ferrugineus (Oliver) is an important pest of palms that causes significant damage by boring into and feeding within palm stem tissues. Here, we studied the proteolytic process of Cry3Aa in the RPW to understand the mechanism of Cry toxicity. The bioassays showed that Cry3Aa toxin is weakly toxic to the RPW. Proteolytic activation assays indicated the Cry3Aa protein is digested into smaller fragments than the 55-kDa activated fragments under different conditions. In particular, at higher mass ratios of gut protease and Cry3Aa protein (5:1, 2:1, and 1:1, respectively), and at 36.9°C for 16 h in a solution of pH 8.6, the Cry3Aa protoxin is over-digested by the gut proteases of weevil larvae. Moreover, the zymogram analysis of the gut proteases revealed the RPW larvae harbors intestinal digestive enzymes mainly composed of serine proteases. This study describes the proteolytic activation process of Cry3Aa in the midgut of RPW larvae.


Subject(s)
Bacillus thuringiensis Toxins , Coleoptera , Endotoxins , Hemolysin Proteins , Weevils , Animals , Bacillus thuringiensis , Larva , Peptide Hydrolases
17.
Microorganisms ; 9(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34576755

ABSTRACT

The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria.

18.
Mitochondrial DNA B Resour ; 6(7): 2026-2027, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34212085

ABSTRACT

Trictenotoma davidi Deyrolle, 1875 is a beetle of the Trictenotomidae family. The length of the complete mitochondria genome of T. davidi was 15,910 bp with 24.1% GC content, including 39.9% A, 15.1% C, 9.0% G, and 36.0% T. The genome encoded 13 protein-coding genes, 22 tRNAs, and 2 rRNAs. Phylogenetic analysis showed that T. davidi was closely related to Vincenzellus ruficollis. This study provided useful genetic information for the evolution of T. davidi and Trictenotomidae insects.

19.
Mitochondrial DNA B Resour ; 6(6): 1694-1695, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34104741

ABSTRACT

Agelasta perplexa Pascoe is a mulberry borer that threatens the health of the plant. This study revealed the length of the complete mitochondrial genome of A. perplexa which consists of 15,552 bp length with 39.8% A, 12.8% C, 8.4% G, and 39.1% T, respectively. The GC content of whole mitochondrial genome is 21.1%. The complete mitochondrial genome encodes 12 protein-coding genes (PCGs), 22 tRNAs, two rRNAs, and one AT-rich region. This study can facilitate further research about genetic evolution as well as prevention and control strategy of A. perplexa.

20.
Insects ; 12(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807543

ABSTRACT

The insecticidal Cry4Ba and Cry11Aa crystal proteins from Bacillus thuringiensis subsp. israelensis (Bti) are highly toxic to Ae. aegypti larvae. The glycosylphosphatidylinositol (GPI)-anchored APN was identified as an important membrane-bound receptor for multiple Cry toxins in numerous Lepidoptera, Coleoptera, and Diptera insects. However, there is no direct molecular evidence to link APN of Ae. aegypti to Bti toxicity in vivo. In this study, two Cry4Ba/Cry11Aa-binding Ae. aegypti GPI-APN isoforms (AeAPN1 and AeAPN2) were individually knocked-out using CRISPR/Cas9 mutagenesis, and the AeAPN1/AeAPN2 double-mutant homozygous strain was generated using the reverse genetics approach. ELISA assays showed that the high binding affinity of Cry4Ba and Cry11Aa protoxins to the midgut brush border membrane vesicles (BBMVs) from these APN knockouts was similar to the background from the wild-type (WT) strain. Likewise, the bioassay results showed that neither the single knockout of AeAPN1 or AeAPN2, nor the simultaneous disruption of AeAPN1 and AeAPN2 resulted in significant changes in susceptibility of Ae. aegypti larvae to Cry4Ba and Cry11Aa toxins. Accordingly, our results suggest that AeAPN1 and AeAPN2 may not mediate Bti Cry4Ba and Cry11Aa toxicity in Ae. aegypti larvae as their binding proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...