Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 69(8): 890-900, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37443404

ABSTRACT

BACKGROUND: Newborn screening (NBS) is an effective public health intervention that reduces death and disability from treatable genetic diseases, but many conditions are not screened due to a lack of a suitable assay. Whole genome and whole exome sequencing can potentially expand NBS but there remain many technical challenges preventing their use in population NBS. We investigated if targeted gene sequencing (TGS) is a feasible methodology for expanding NBS. METHODS: We constructed a TGS panel of 164 genes which screens for a broad range of inherited conditions. We designed a high-volume, low-turnaround laboratory and bioinformatics workflow that avoids the technical and data interpretation challenges associated with whole genome and whole exome sequencing. A methods-based analytical validation of the assay was completed and test performance in 2552 newborns examined. We calculated annual birth estimates for each condition to assess cost-effectiveness. RESULTS: Assay analytical sensitivity was >99% and specificity was 100%. Of the newborns screened, 1.3% tested positive for a condition. On average, each individual had 225 variants to interpret and 1.8% were variants of uncertain significance (VUS). The turnaround time was 7 to 10 days. Maximum batch size was 1536 samples. CONCLUSIONS: We demonstrate that a TGS assay could be incorporated into an NBS program soon to increase the number of conditions screened. Additionally, we conclude that NBS using TGS may be cost-effective.


Subject(s)
Computational Biology , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Feasibility Studies , DNA , Sequence Analysis, DNA
3.
Nat Commun ; 13(1): 3558, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732665

ABSTRACT

Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Ribonuclease III , Vancomycin Resistance , 3' Untranslated Regions/genetics , Anti-Bacterial Agents/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Vancomycin/pharmacology , Vancomycin Resistance/genetics
4.
Trends Genet ; 37(1): 35-45, 2021 01.
Article in English | MEDLINE | ID: mdl-32951948

ABSTRACT

The golden age of antibiotics has passed, and the threat of untreatable antimicrobial resistant infections is now a reality for many individuals. Understanding how bacteria resist antimicrobial treatment and regulate gene expression in response to antibiotics is an important step towards combating resistance. In this review we focus on a ubiquitous class of bacterial gene regulators termed regulatory small RNAs (sRNAs) and how they contribute to antimicrobial resistance and tolerance. Small RNAs have notable roles in modulating the composition of the bacterial envelope, and through these functions control intrinsic antimicrobial resistance in many human pathogens. Recent technical advances that allow profiling of the 'sRNA interactome' have revealed a complex post-transcriptional network of sRNA interactions that can be used to identify network hubs and regulatory bottlenecks. Sequence-specific inhibition of these sRNAs with programmable RNA-targeting therapeutics may present avenues for treating antimicrobial resistant pathogens or resensitizing to our current antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics , Animals , Bacteria/drug effects , Bacteria/growth & development , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...