Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Mol Divers ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36735167

ABSTRACT

A series of 1-benzo[1,3]dioxol-5-yl-indoles bearing 3-N-fused heteroaryl moieties have been designed based on literature reports of the activity of indoles against various cancer cell lines, synthesized via a Pd-catalyzed C-N cross-coupling, and evaluated for their anticancer activity against prostate (LNCaP), pancreatic (MIA PaCa-2), and acute lymphoblastic leukemia (CCRF-CEM) cancer cell lines. A detailed structure-activity relationship study culminated in the identification of 3-N-benzo[1,2,5]oxadiazole 17 and 3-N-2-methylquinoline 20, whose IC50 values ranged from 328 to 644 nM against CCRF-CEM and MIA PaCa-2. Further mechanistic studies revealed that 20 caused cell cycle arrest at the S phase and induced apoptosis in CCRF-CEM cancer cells. These 1-benzo[1,3]dioxol-5-yl-3-N-fused heteroaryl indoles may serve as a template for further optimization to afford more active analogs and develop a comprehensive understanding of the structure-activity relationships of indole anticancer molecules.

2.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36233031

ABSTRACT

CXCR4 antagonists have been claimed to reduce mortality after myocardial infarction in myocardial infarction (MI) animals, presumably due to suppressing inflammatory responses caused by myocardial ischemia-reperfusion injury, thus, subsequently facilitating tissue repair and cardiac function recovery. This study aims to determine whether a newly designed CXCR4 antagonist DBPR807 could exert better vascular-protective effects than other clinical counterparts (e.g., AMD3100) to alleviate cardiac damage further exacerbated by reperfusion. Consequently, we find that instead of traditional continuous treatment or multiple-dose treatment at different intervals of time, a single-dose treatment of DBPR807 before reperfusion in MI animals could attenuate inflammation via protecting oxidative stress damage and preserve vascular/capillary density and integrity via mobilizing endothelial progenitor cells, leading to a desirable fibrosis reduction and recovery of cardiac function, as evaluated with the LVEF (left ventricular ejection fraction) in infarcted hearts in rats and mini-pigs, respectively. Thus, it is highly suggested that CXCR4 antagonists should be given at a single high dose prior to reperfusion to provide the maximal cardiac functional improvement. Based on its favorable efficacy and safety profiles indicated in tested animals, DBPR807 has a great potential to serve as an adjunctive medicine for percutaneous coronary intervention (PCI) therapies in acute MI patients.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Percutaneous Coronary Intervention , Receptors, CXCR4 , Animals , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/etiology , Rats , Receptors, CXCR4/antagonists & inhibitors , Stroke Volume , Swine , Swine, Miniature , Ventricular Function, Left
3.
Front Pharmacol ; 12: 706901, 2021.
Article in English | MEDLINE | ID: mdl-34483914

ABSTRACT

Remdesivir, a prodrug targeting RNA-dependent-RNA-polymerase, and cyclosporine, a calcineurin inhibitor, individually exerted inhibitory activity against human coronavirus OC43 (HCoV-OC43) in HCT-8 and MRC-5 cells at EC50 values of 96 ± 34 ∼ 85 ± 23 nM and 2,920 ± 364 ∼ 4,419 ± 490 nM, respectively. When combined, these two drugs synergistically inhibited HCoV-OC43 in both HCT-8 and MRC-5 cells assayed by immunofluorescence assay (IFA). Remdesivir and cyclosporine also separately reduced IL-6 production induced by HCoV-OC43 in human lung fibroblasts MRC-5 cells with EC50 values of 224 ± 53 nM and 1,292 ± 352 nM, respectively; and synergistically reduced it when combined. Similar trends were observed for SARS-CoV-2, which were 1) separately inhibited by remdesivir and cyclosporine with respective EC50 values of 3,962 ± 303 nM and 7,213 ± 143 nM by IFA, and 291 ± 91 nM and 6,767 ± 1,827 nM by a plaque-formation assay; and 2) synergistically inhibited by their combination, again by IFA and plaque-formation assay. Collectively, these results suggest that the combination of remdesivir and cyclosporine merits further study as a possible treatment for COVID-19 complexed with a cytokine storm.

4.
Article in English | MEDLINE | ID: mdl-32669265

ABSTRACT

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Motifs , Animals , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrrolidines/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2 , Sulfonic Acids , Thermodynamics , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
5.
Biomed J ; 43(4): 368-374, 2020 08.
Article in English | MEDLINE | ID: mdl-32563698

ABSTRACT

BACKGROUND: New therapeutic options to address the ongoing coronavirus disease 2019 (COVID-19) pandemic are urgently needed. One possible strategy is the repurposing of existing drugs approved for other indications as antiviral agents for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the commercial unavailability of SARS-CoV-2 drugs for treating COVID-19, we screened approximately 250 existing drugs or pharmacologically active compounds for their inhibitory activities against feline infectious peritonitis coronavirus (FIPV) and human coronavirus OC43 (HCoV-OC43), a human coronavirus in the same genus (Betacoronavirus) as SARS-CoV-2. METHODS: FIPV was proliferated in feline Fcwf-4 cells and HCoV-OC43 in human HCT-8 cells. Viral proliferation was assayed by visualization of cytopathic effects on the infected Fcwf-4 cells and immunofluorescent assay for detection of the nucleocapsid proteins of HCoV-OC43 in the HCT-8 cells. The concentrations (EC50) of each drug necessary to diminish viral activity to 50% of that for the untreated controls were determined. The viabilities of Fcwf-4 and HCT-8 cells were measured by crystal violet staining and MTS/PMS assay, respectively. RESULTS: Fifteen out of the 252 drugs or pharmacologically active compounds screened were found to be active against both FIPV and HCoV-OC43, with EC50 values ranging from 11 nM to 75 µM. They are all old drugs as follows, anisomycin, antimycin A, atovaquone, chloroquine, conivaptan, emetine, gemcitabine, homoharringtonine, niclosamide, nitazoxanide, oligomycin, salinomycin, tilorone, valinomycin, and vismodegib. CONCLUSION: All of the old drugs identified as having activity against FIPV and HCoV-OC43 have seen clinical use in their respective indications and are associated with known dosing schedules and adverse effect or toxicity profiles in humans. Those, when later confirmed to have an anti-viral effect on SARS-CoV-2, should be considered for immediate uses in COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Coronavirus OC43, Human/drug effects , Drug Repositioning/methods , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
6.
Biomed J ; 43(4): 355-362, 2020 08.
Article in English | MEDLINE | ID: mdl-32426387

ABSTRACT

Background: The ongoing COVID-19 pandemic has caused more than 193,825 deaths during the past few months. A quick-to-be-identified cure for the disease will be a therapeutic medicine that has prior use experiences in patients in order to resolve the current pandemic situation before it could become worsening. Artificial intelligence (AI) technology is hereby applied to identify the marketed drugs with potential for treating COVID-19. Methods: An AI platform was established to identify potential old drugs with anti-coronavirus activities by using two different learning databases; one consisted of the compounds reported or proven active against SARS-CoV, SARS-CoV-2, human immunodeficiency virus, influenza virus, and the other one containing the known 3C-like protease inhibitors. All AI predicted drugs were then tested for activities against a feline coronavirus in in vitro cell-based assay. These assay results were feedbacks to the AI system for relearning and thus to generate a modified AI model to search for old drugs again. Results: After a few runs of AI learning and prediction processes, the AI system identified 80 marketed drugs with potential. Among them, 8 drugs (bedaquiline, brequinar, celecoxib, clofazimine, conivaptan, gemcitabine, tolcapone, and vismodegib) showed in vitro activities against the proliferation of a feline infectious peritonitis (FIP) virus in Fcwf-4 cells. In addition, 5 other drugs (boceprevir, chloroquine, homoharringtonine, tilorone, and salinomycin) were also found active during the exercises of AI approaches. Conclusion: Having taken advantages of AI, we identified old drugs with activities against FIP coronavirus. Further studies are underway to demonstrate their activities against SARS-CoV-2 in vitro and in vivo at clinically achievable concentrations and doses. With prior use experiences in patients, these old drugs if proven active against SARS-CoV-2 can readily be applied for fighting COVID-19 pandemic.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Data Management , Humans , Pandemics , Predictive Value of Tests , SARS-CoV-2
7.
Front Pharmacol ; 11: 606097, 2020.
Article in English | MEDLINE | ID: mdl-33519469

ABSTRACT

Tylophorine-based compounds and natural cardiotonic steroids (cardenolides and bufadienolides) are two classes of transmissible gastroenteritis coronavirus inhibitors, targeting viral RNA and host cell factors, respectively. We tested both types of compounds against two types of coronaviruses, to compare and contrast their antiviral properties, and with view to their further therapeutic development. Examples of both types of compounds potently inhibited the replication of both feline infectious peritonitis virus and human coronavirus OC43 with EC50 values of up to 8 and 16 nM, respectively. Strikingly, the tylophorine-based compounds tested inhibited viral yields of HCoV-OC43 to a much greater extent (7-8 log magnitudes of p.f.u./ml) than the cardiotonic steroids (about 2-3 log magnitudes of p.f.u./ml), as determined by end point assays. Based on these results, three tylophorine-based compounds were further examined for their anti-viral activities on two other human coronaviruses, HCoV-229E and SARS-CoV-2. These three tylophorine-based compounds inhibited HCoV-229E with EC50 values of up to 6.5 nM, inhibited viral yields of HCoV-229E by 6-7 log magnitudes of p.f.u./ml, and were also found to inhibit SARS-CoV-2 with EC50 values of up to 2.5-14 nM. In conclusion, tylophorine-based compounds are potent, broad-spectrum inhibitors of coronaviruses including SARS-CoV-2, and could be used for the treatment of COVID-19.

8.
Antiviral Res ; 172: 104636, 2019 12.
Article in English | MEDLINE | ID: mdl-31654671

ABSTRACT

Dengue virus (DENV) is a global health problem that affects approximately 3.9 billion people worldwide. Since safety concerns were raised for the only licensed vaccine, Dengvaxia, and since the present treatment is only supportive care, the development of more effective therapeutic anti-DENV agents is urgently needed. In this report, we identified a potential small-molecule inhibitor, BP34610, via cell-based high-throughput screening (HTS) of 12,000 compounds using DENV-2 reporter viruses. BP34610 reduced the virus yields of type 2 DENV-infected cells with a 50% effective concentration (EC50) and selectivity index value of 0.48 ±â€¯0.06 µM and 197, respectively. Without detectable cytotoxicity, the compound inhibited not only all four serotypes of DENV but also Japanese encephalitis virus (JEV). Time-of-addition experiments suggested that BP34610 may act at an early stage of DENV virus infection. Sequencing analyses of several individual clones derived from BP34610-resistant viruses revealed a consensus amino acid substitution (S397P) in the N-terminal stem region of the E protein. Introduction of S397P into the DENV reporter viruses conferred an over 14.8-fold EC90 shift for BP34610. Importantly, the combination of BP34610 with a viral replication inhibitor, ribavirin, displayed synergistic enhancement of anti-DENV-2 activity. Our results identify an effective small-molecule inhibitor, BP34610, which likely targets the DENV E protein. BP34610 could be developed as an anti-flavivirus agent in the future.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Flavivirus/drug effects , Viral Envelope Proteins/drug effects , Animals , Antiviral Agents/toxicity , Cell Line , Dengue/drug therapy , Drug Synergism , Encephalitis Virus, Japanese/drug effects , High-Throughput Screening Assays/methods , Humans , Ribavirin/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects
9.
Bioorg Chem ; 83: 520-525, 2019 03.
Article in English | MEDLINE | ID: mdl-30469144

ABSTRACT

Sodium-dependent glucose co-transporter 2 (SGLT2) inhibition has been demonstrated to efficiently control hyperglycemia via an insulin secretion-independent pathway. The unique mode of action eliminates the risk of hypoglycemia and makes SGLT2 inhibitors an attractive option for the treatment of type 2 diabetes. In a continuation of our previous studies on SGLT2 inhibitors bearing different sugar moieties, sixteen new N-glucosyl indole derivatives were designed, synthesized, and evaluated for their inhibitory activity against hSGLT2. Of these sixteen, acethydrazide-containing N-glucosyl indole 9d was found to be the most potent SGLT2 inhibitor, and caused a significant elevation in urine glucose excretion in rats at 50 mg/kg, relative to the vehicle control.


Subject(s)
Glucosides/pharmacology , Indoles/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Animals , Benzhydryl Compounds/pharmacology , CHO Cells , Cricetulus , Glucosides/chemical synthesis , Glucosides/chemistry , Glucosides/pharmacokinetics , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacokinetics , Molecular Structure , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors/chemical synthesis , Sodium-Glucose Transporter 2 Inhibitors/chemistry , Sodium-Glucose Transporter 2 Inhibitors/pharmacokinetics , Structure-Activity Relationship
10.
J Med Chem ; 61(3): 818-833, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29314840

ABSTRACT

The function of the CXCR4/CXCL12 axis accounts for many disease indications, including tissue/nerve regeneration, cancer metastasis, and inflammation. Blocking CXCR4 signaling with its antagonists may lead to moving out CXCR4+ cell types from bone marrow to peripheral circulation. We have discovered a novel series of pyrimidine-based CXCR4 antagonists, a representative (i.e., 16) of which was tolerated at a higher dose and showed better HSC-mobilizing ability at the maximal response dose relative to the approved drug 1 (AMD3100), and thus considered a potential drug candidate for PBSCT indication. Docking compound 16 into the X-ray crystal structure of CXCR4 receptor revealed that it adopted a spider-like conformation striding over both major and minor subpockets. This putative binding mode provides a new insight into CXCR4 receptor-ligand interactions for further structural modifications.


Subject(s)
Peripheral Blood Stem Cell Transplantation , Receptors, CXCR4/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Animals , Benzylamines , Cyclams , HEK293 Cells , Heterocyclic Compounds/metabolism , Heterocyclic Compounds/pharmacology , Humans , Inhibitory Concentration 50 , Male , Mice , Molecular Docking Simulation , Protein Conformation , Receptors, CXCR4/chemistry
11.
Eur J Med Chem ; 143: 611-620, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29216560

ABSTRACT

Treatment of hyperglycemia with drugs that block renal glucose reabsorption via inhibition of sodium-dependent glucose cotransporter 2 (SGLT2) is a novel approach to diabetes management. In this study, twenty-seven aryl C-glycosides bearing a C=N/C-N linkage at the glucosyl C6 position were designed, synthesized and evaluated for their inhibitory activity against human SGLT2 (hSGLT2). Compounds with good hSGLT2 inhibition were further investigated to determine their selectivity over hSGLT1. Of these, five representative aryl C-glycosides were chosen for pharmacokinetic analysis. Oxime 2a was determined to have the most promising pharmacokinetic properties and was selected for in vivo glucosuria and plasma glucose level studies, which found it to exhibit comparable efficacy to dapagliflozin (1). Furthermore, 2a was not found to exhibit either significant cytotoxicity (CC50 > 50 µM) or human ether-a-go-go related gene (hERG) inhibition (2% inhibition at 10 µM). Taken together, these efforts culminated in the discovery of oxime 2a as a potential SGLT2 inhibitor.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Monosaccharides/pharmacology , Oximes/pharmacology , Sodium-Glucose Transporter 2 Inhibitors , Administration, Intravenous , Administration, Oral , Animals , Benzhydryl Compounds/administration & dosage , Benzhydryl Compounds/pharmacology , Blood Glucose/drug effects , Dose-Response Relationship, Drug , Glucose/analysis , Glucosides/administration & dosage , Glucosides/pharmacology , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Molecular Structure , Monosaccharides/chemistry , Oximes/administration & dosage , Oximes/chemistry , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 , Structure-Activity Relationship
12.
J Med Chem ; 60(13): 5599-5612, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28609101

ABSTRACT

Humans have two glutaminase genes, GLS (GLS1) and GLS2, each of which has two alternative transcripts: the kidney isoform (KGA) and glutaminase C (GAC) for GLS, and the liver isoform (LGA) and glutaminase B (GAB) for GLS2. Initial hit compound (Z)-5-((1-(4-bromophenyl)-2,5-dimethyl-1H-pyrrol-3-yl)methylene)thiazolidine-2,4-dione (2), a thiazolidine-2,4-dione, was obtained from a high throughput screening of 40 000 compounds against KGA. Subsequently, a series of thiazolidine-2,4-dione derivatives was synthesized. Most of these were found to inhibit KGA and GAC with comparable activities, were less potent inhibitors of GAB, and were moderately selective for GLS1 over GLS2. The relationships between chemical structure, activity, and selectivity were investigated. The lead compounds obtained were found to (1) offer in vitro cellular activities for inhibiting cell growth, clonogenicity, and cellular glutamate production, (2) exhibit high concentrations of exposure in plasma by a pharmacokinetic study, and (3) reduce the tumor size of xenografted human pancreatic AsPC-1 carcinoma cells in mice.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutaminase/antagonists & inhibitors , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Enzyme Inhibitors/blood , Enzyme Inhibitors/therapeutic use , Glutaminase/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Rats , Rats, Sprague-Dawley , Thiazolidinediones/blood , Thiazolidinediones/therapeutic use
13.
Bioorg Med Chem ; 24(10): 2242-50, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27075813

ABSTRACT

Suppression of glucose reabsorption through the inhibition of sodium-dependent glucose co-transporter 2 (SGLT2) is a promising therapeutic approach for the treatment of type 2 diabetes. To investigate the effect of C6-substitution on inhibition of SGLT2 by N-indolylglucosides, a small library of 6-triazole, 6-amide, 6-urea, and 6-thiourea N-indolylglycosides were synthesized and tested. A detailed structure-activity relationship (SAR) study culminated in the identification of 6-amide derivatives 6a and 6o as potent SGLT2 inhibitors, which were further tested for inhibitory activity against SGLT1. The data obtained indicated that 6a and 6o are mildly to moderately selective for SGLT2 over SGLT1. Both compounds were also evaluated in a urinary glucose excretion test and pharmacokinetic study; 6a was found capable of inducing urinary glucose excretion in normal SD rats.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycosides/chemistry , Glycosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors , Animals , CHO Cells , Cricetulus , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glycosides/pharmacokinetics , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Rats, Sprague-Dawley , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Sodium-Glucose Transporter 2/metabolism
14.
Sci Rep ; 5: 11702, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26118648

ABSTRACT

The inhibition of FMS-like tyrosine kinase 3 (FLT3) activity using small-molecule inhibitors has emerged as a target-based alternative to traditional chemotherapy for the treatment of acute myeloid leukemia (AML). In this study, we report the use of structure-based virtual screening (SBVS), a computer-aided drug design technique for the identification of new chemotypes for FLT3 inhibition. For this purpose, homology modeling (HM) of the DFG-in FLT3 structure was carried using two template structures, including PDB ID: 1RJB (DFG-out FLT3 kinase domain) and PDB ID: 3LCD (DFG-in CSF-1 kinase domain). The modeled structure was able to correctly identify known DFG-in (SU11248, CEP-701, and PKC-412) and DFG-out (sorafenib, ABT-869 and AC220) FLT3 inhibitors, in docking studies. The modeled structure was then used to carry out SBVS of an HTS library of 125,000 compounds. The top scoring 97 compounds were tested for FLT3 kinase inhibition, and two hits (BPR056, IC50 = 2.3 and BPR080, IC50 = 10.7 µM) were identified. Molecular dynamics simulation and density functional theory calculation suggest that BPR056 (MW: 325.32; cLogP: 2.48) interacted with FLT3 in a stable manner and could be chemically optimized to realize a drug-like lead in the future.


Subject(s)
Drug Evaluation, Preclinical , Models, Molecular , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/pharmacology , Structural Homology, Protein , User-Computer Interface , fms-Like Tyrosine Kinase 3/chemistry , Amino Acid Motifs , Amino Acid Sequence , Computer-Aided Design , Drug Design , Gene Duplication , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary , Quantum Theory , Reproducibility of Results , Sequence Alignment , Thermodynamics , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
15.
Eur J Pharm Sci ; 74: 40-4, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-25819489

ABSTRACT

Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 µM by high-throughput screening of 41,000 compounds.


Subject(s)
Drug Discovery , Fluorescent Dyes/chemistry , Glucose/analogs & derivatives , Hypoglycemic Agents/pharmacology , Membrane Transport Modulators/pharmacology , Naphthalimides/chemistry , Sodium-Glucose Transporter 2 Inhibitors , Absorption, Physiological/drug effects , Animals , CHO Cells , Carbon Radioisotopes , Click Chemistry , Clone Cells , Cricetulus , Fluorescent Dyes/analysis , Glucose/metabolism , High-Throughput Screening Assays , Humans , Kinetics , Methylglucosides/metabolism , Naphthalimides/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Small Molecule Libraries , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism
16.
J Med Chem ; 58(5): 2315-25, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25686267

ABSTRACT

We have discovered a novel series of quinazoline-based CXCR4 antagonists. Of these, compound 19 mobilized CXCR4(+) cell types, including hematopoietic stem cells and endothelial progenitor cells, more efficiently than the marketed 1 (AMD3100) with subcutaneous administration at the same dose (6 mg/kg) in mice. This series of compounds thus provides a set of valuable tools to study diseases mediated by the CXCR4/SDF-1 axis, including myocardial infarction, ischemic stroke, and cancer metastasis. More importantly, treatment with compound 19 significantly lowered levels of blood urea nitrogen and serum creatinine in rats with renal ischemia-reperfusion injury, providing evidence for its therapeutic potential in preventing ischemic acute kidney injury. CXCR4 antagonists such as 19 might also be useful to increase circulating levels of adult stem cells, thereby exerting beneficial effects on damaged and/or inflamed tissues in diseases that currently are not treated by standard approaches.


Subject(s)
Acute Kidney Injury/prevention & control , Chemotaxis/drug effects , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/cytology , Quinazolines/chemistry , Quinazolines/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Reperfusion Injury/prevention & control , Triazoles/chemistry , Triazoles/pharmacology , Animals , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Signal Transduction
17.
Eur J Med Chem ; 83: 226-35, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-24960626

ABSTRACT

Here we report for the first time the use of fit quality (FQ), a ligand efficiency (LE) based measure for virtual screening (VS) of compound libraries. The LE based VS protocol was used to screen an in-house database of 125,000 compounds to identify aurora kinase A inhibitors. First, 20 known aurora kinase inhibitors were docked to aurora kinase A crystal structure (PDB ID: 2W1C); and the conformations of docked ligand were used to create a pharmacophore (PH) model. The PH model was used to screen the database compounds, and rank (PH rank) them based on the predicted IC50 values. Next, LE_Scale, a weight-dependant LE function, was derived from 294 known aurora kinase inhibitors. Using the fit quality (FQ = LE/LE_Scale) score derived from the LE_Scale function, the database compounds were reranked (PH_FQ rank) and the top 151 (0.12% of database) compounds were assessed for aurora kinase A inhibition biochemically. This VS protocol led to the identification of 7 novel hits, with compound 5 showing aurora kinase A IC50 = 1.29 µM. Furthermore, testing of 5 against a panel of 31 kinase reveals that it is selective toward aurora kinase A & B, with <50% inhibition for other kinases at 10 µM concentrations and is a suitable candidate for further development. Incorporation of FQ score in the VS protocol not only helped identify a novel aurora kinase inhibitor, 5, but also increased the hit rate of the VS protocol by improving the enrichment factor (EF) for FQ based screening (EF = 828), compared to PH based screening (EF = 237) alone. The LE based VS protocol disclosed here could be applied to other targets for hit identification in an efficient manner.


Subject(s)
Drug Evaluation, Preclinical/methods , Small Molecule Libraries/pharmacology , User-Computer Interface , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/chemistry , Aurora Kinase A/metabolism , High-Throughput Screening Assays , Ligands , Molecular Docking Simulation , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
18.
Antimicrob Agents Chemother ; 58(1): 110-9, 2014.
Article in English | MEDLINE | ID: mdl-24145533

ABSTRACT

Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 µM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Replicon/drug effects , Virus Replication/drug effects , Animals , Cricetinae , Dengue Virus/enzymology , Drug Resistance, Viral , Serine Endopeptidases/metabolism , Small Molecule Libraries
20.
Antiviral Res ; 98(2): 228-41, 2013 May.
Article in English | MEDLINE | ID: mdl-23499649

ABSTRACT

Dengue virus (DENV) is a public health threat to approximately 40% of the global population. At present, neither licensed vaccines nor effective therapies exist, and the mechanism of viral RNA replication is not well understood. Here, we report the development of efficient Renilla luciferase reporter-based DENV replicons that contain the full-length capsid sequence for transient and stable DENV RNA replication. A comparison of the transient and stable expression of this RNA-launched replicon to replicons containing various deletions revealed dengue replicon containing entire mature capsid RNA element has higher replicon activity. An efficient DNA-launched DENV replicon, pCMV-DV2Rep, containing a full-length capsid sequence, was created and successfully applied to evaluate the potency of known DENV inhibitors. Stable cell lines harboring the DENV replicon were easily established by transfecting pCMV-DV2Rep into BHK21 cells. Steady and high replicon reporter signals were observed in the stable DENV replicon cells, even after 30 passages. The stable DENV replicon cells were successfully used to determine the potency of known DENV inhibitors. A high-throughput screening assay based on stable DENV replicon cells was evaluated and shown to have an excellent Z' factor of 0.74. Altogether, the development of our efficient DENV replicon system will facilitate the study of virus replication and the discovery of antiviral compounds.


Subject(s)
Antiviral Agents/pharmacology , Biological Assay/methods , Dengue Virus/drug effects , Drug Evaluation, Preclinical/methods , Replicon , Small Molecule Libraries/pharmacology , Animals , Dengue/virology , Dengue Virus/genetics , Dengue Virus/physiology , Genes, Reporter , Humans , Luciferases, Renilla/genetics , Luciferases, Renilla/metabolism , Replicon/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...