Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873158

ABSTRACT

Neurons are challenged to maintain proteostasis in neuronal projections, particularly with the physiological stress at synapses to support intercellular communication underlying important functions such as memory and movement control. Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. Using high-resolution fluorescent microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites, particularly more proximal regions, and increase this asymmetric localization following proteotoxic stress through microtubule-based transport from the soma. The most abundant chaperone mRNA in dendrites encodes the constitutive heat shock protein 70, HSPA8. Proteotoxic stress in cultured neurons, induced by inhibiting proteasome activity or inducing oxidative stress, enhanced transport of Hspa8 mRNAs to dendrites and the percentage of mRNAs engaged in translation on mono and polyribosomes. Knocking down the ALS-related protein Fused in Sarcoma (FUS) and a dominant mutation in the heterogenous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) impaired stress-mediated localization of Hspa8 mRNA to dendrites in cultured murine motor neurons and human iPSC-derived neurons, respectively, revealing the importance of these RNA-binding proteins in maintaining proteostasis. These results reveal the increased dendritic localization and translation of the constitutive HSP70 Hspa8 mRNA as a crucial neuronal stress response to uphold proteostasis and prevent neurodegeneration.

2.
Res Sq ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38168440

ABSTRACT

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discovered that neurons localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhanced HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites was impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured mouse motor neurons and expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a crucial and unexpected neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...