Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; : e2408936, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221549

ABSTRACT

Escalating energy demands of self-independent on-skin/wearable electronics impose challenges on corresponding power sources to offer greater power density, permeability, and stretchability. Here, a high-efficient breathable and stretchable monolithic hybrid triboelectric-piezoelectric-electromagnetic nanogenerator-based electronic skin (TPEG-skin) is reported via sandwiching a liquid metal mesh with two-layer topological insulator-piezoelectric polymer composite nanofibers. TPEG-skin concurrently extracts biomechanical energy (from body motions) and electromagnetic radiations (from adjacent appliances), operating as epidermal power sources and whole-body self-powered sensors. Topological insulators with conductive surface states supply notably enhanced triboelectric and piezoelectric effects, endowing TPEG-skin with a 288 V output voltage (10 N, 4 Hz), ∼3 times that of state-of-the-art devices. Liquid metal meshes serve as breathable electrodes and extract ambient electromagnetic pollution (±60 V, ±1.6 µA cm-2). TPEG-skin implements self-powered physiological and body motion monitoring and system-level human-machine interactions. This study provides compatible energy strategies for on-skin/wearable electronics with high power density, monolithic device integration, and multifunctionality.

2.
Nat Commun ; 15(1): 1238, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336848

ABSTRACT

Large-area metamorphic stretchable sensor networks are desirable in haptic sensing and next-generation electronics. Triboelectric nanogenerator-based self-powered tactile sensors in single-electrode mode constitute one of the best solutions with ideal attributes. However, their large-area multiplexing utilizations are restricted by severe misrecognition between sensing nodes and high-density internal circuits. Here, we provide an electrical signal shielding strategy delivering a large-area multiplexing self-powered untethered triboelectric electronic skin (UTE-skin) with an ultralow misrecognition rate (0.20%). An omnidirectionally stretchable carbon black-Ecoflex composite-based shielding layer is developed to effectively attenuate electrostatic interference from wirings, guaranteeing low-level noise in sensing matrices. UTE-skin operates reliably under 100% uniaxial, 100% biaxial, and 400% isotropic strains, achieving high-quality pressure imaging and multi-touch real-time visualization. Smart gloves for tactile recognition, intelligent insoles for gait analysis, and deformable human-machine interfaces are demonstrated. This work signifies a substantial breakthrough in haptic sensing, offering solutions for the previously challenging issue of large-area multiplexing sensing arrays.


Subject(s)
Touch Perception , Wearable Electronic Devices , Humans , Touch , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL