Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4111-4116, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467721

ABSTRACT

Sanguinarine is the main active component of the Papaver plants, and protopine-6-hydroxylase(P6 H), involved in the sanguinarine biosynthetic pathway, can oxidize protopine to 6-hydroxyprotopine. The investigation on the diversity of P6 H genes in the medicinal Papaver plants contributes to the acquirement of P6 H with high activity to increase the biosynthesis of sanguinarine. Five P6 H genes in P. somniferum, P. orientale, and P. rhoeas were discovered based on the re-sequencing data of the Papaver species, followed by bioinformatics analysis. With the elongation factor 1α(EF-1α), which exhibits stable expression in the root and stem, as the internal reference gene, the transcription levels of P6H genes in roots and stems of the Papaver plants were detected by real-time fluorescent quantitative PCR. As indicated by the re-sequencing results, there were two genotypes of P6H in P. somniferum and P. orientale, respectively, and only one in P. rhoeas. The bioinformatics analysis showed that the P6 H proteins of the three Papaver plants contained the conserved domain cl12078, which is the characteristic of p450 supergene family, and transmembrane regions. The existence of signal peptide remained verification. Real-time fluorescent quantitative PCR results revealed that the transcription level of P6 H in roots of P. somniferum was about 1.44 times of that in stems(α=0.05). The present study confirmed genetic diversity of P6 H in the three medicinal Papaver plants, which lays a basis for the research on the biosynthesis pathway and mechanism of sanguinarine in Papaver species.


Subject(s)
Berberine Alkaloids , Papaver , Benzophenanthridines , Cytochrome P-450 Enzyme System/genetics , Genetic Variation , Papaver/genetics
2.
Phytomedicine ; 81: 153410, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33285470

ABSTRACT

BACKGROUND: Homocysteine (Hcy) induced vascular endothelial dysfunction is known to be closely associated with oxidative stress and impaired NO system. 1,8-Dihydroxy-3-methoxy-6-methylanthracene-9,10-dione (physcion) has been known to has antioxidative and anti-inflammatory properties. PURPOSE: The purpose of the present study was to define the protective effect of physcion on Hcy-induced endothelial dysfunction and its mechanisms involved. STUDY DESIGN AND METHODS: Hyperhomocysteinemia (HHcy) rat model was induced by feeding 3% methionine. A rat thoracic aortic ring model was used to investigate the effects of physcion on Hcy-induced impairment of endothelium-dependent relaxation. Two doses, low (L, 30 mg/kg/day) and high (H, 50 mg/kg/day) of physcion were used in the present study. To construct Hcy-injured human umbilical vein endothelial cells (HUVECs) model, the cells treated with 3 mM Hcy. The effects of physcion on Hcy-induced HUVECs cytotoxicity and apoptosis were studied using MTT and flow cytometry. Confocal analysis was used to determine the levels of intracellular Ca2+. The levels of protein expression of the apoptosis-related markers Bcl-2, Bax, caspase-9/3, and Akt and endothelial nitric oxide synthase (eNOS) were evaluated by western blot. RESULTS: In the HHcy rat model, plasma levels of Hcy and malondialdehyde (MDA) were elevated (20.45 ± 2.42 vs. 4.67 ± 1.94 µM, 9.42 ± 0.48 vs. 3.47 ± 0.59 nM, p < 0.001 for both), whereas superoxide dismutase (SOD) and nitric oxide (NO) levels were decreased (77.11 ± 4.78 vs. 115.02 ± 5.63 U/ml, 44.51 ± 4.45 vs. 64.18 ± 5.34 µM, p < 0.001 and p < 0.01, respectively). However, treatment with physcion significantly reversed these changes (11.82 ± 2.02 vs. 20.45 ± 2.42 µM, 5.97 ± 0.72 vs. 9.42 ± 0.48 nM, 108.75 ± 5.65 vs. 77.11 ± 4.78 U/ml, 58.14 ± 6.02 vs. 44.51 ± 4.45 µM, p < 0.01 for all). Physcion also prevented Hcy-induced impairment of endothelium-dependent relaxation in HHcy rats (1.56 ± 0.06 vs. 15.44 ± 2.53 nM EC50 for ACh vasorelaxation, p < 0.05 vs. HHcy). In Hcy-injured HUVECs, physcion inhibited the impaired viability, apoptosis and reactive oxygen species. Hcy treatment significantly increased the protein phosphorylation levels of p38 (2.26 ± 0.20 vs. 1.00 ± 0.12, p <0.01), ERK (2.11 ± 0.21 vs. 1.00 ± 0.11, p <0.01) and JNK. Moreover, physcion reversed the Hcy-induced apoptosis related parameter changes such as decreased mitochondrial membrane potential (MMP) and Bcl-2/Bax protein ratio, and increased protein expression of caspase-9/3 in HUVECs. Furthermore, the downregulation of Ca2+, Akt, eNOS and NO caused by Hcy were recovered with physcion treatment in HUVECs. CONCLUSION: Physcion prevents Hcy-induced endothelial dysfunction by activating Ca2+- and Akt-eNOS-NO signaling pathways. This study provides the first evidence that physcion might be a candidate agent for the prevention of cardiovascular disease induced by Hcy.


Subject(s)
Calcium/metabolism , Emodin/analogs & derivatives , Endothelium, Vascular/drug effects , Homocysteine/metabolism , Hyperhomocysteinemia/drug therapy , Animals , Apoptosis/drug effects , Caspase 9/metabolism , Emodin/pharmacology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hyperhomocysteinemia/metabolism , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Vasodilation/drug effects
3.
Eur J Pharmacol ; 864: 172717, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31586637

ABSTRACT

Homocysteine (Hcy) is an independent risk factor in the development of cardiovascular diseases (CVD). Hyperhomocysteinemia (HHcy), induces the injury of vascular endothelial cells via oxidative stress. Oxymatrine (OMT), one of the main components of Sophora flavescens, has displayed anti-inflammatory, anti-oxidant and anti-apoptotic activity. However, the effect of OMT on the Hcy-induced endothelial injury is not clearly defined yet. The aim of this study was to determine the protective effect of OMT on the Hcy-induced endothelial injury and its mechanisms involved. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro. Methyl thiazolyl tetrazolium assay (MTT), fluorescence staining, flow cytometry and western blotting were used in this study. OMT prevented the Hcy-induced toxicity and apoptosis in HUVECs. Moreover, OMT suppressed Hcy-induced increases in reactive oxygen species, lactate dehydrogenase, malondialdehyde levels and increased superoxide dismutase levels. OMT reversed the Hcy-induced decrease in the protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2). In addition, OMT reversed the Hcy-induced apoptosis related biochemical changes such as decreased mitochondrial membrane potential and Bcl-2/Bax protein ratio, and increased protein expression of caspase-9 and caspase-3. Furthermore, OMT elevated the phosphorylation levels of Akt and eNOS, and the formation of nitric oxide (NO) in injured cells. These results suggest that OMT prevents Hcy-induced endothelial injury by regulating mitochondrial-dependent apoptosis and Akt-eNOS-NO signaling pathways concomitantly with accentuation of Nrf2 expression.


Subject(s)
Alkaloids/pharmacology , Apoptosis/drug effects , Homocysteine/adverse effects , Human Umbilical Vein Endothelial Cells/drug effects , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinolizines/pharmacology , Cytoprotection/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...