Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Nutr Rev ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013202

ABSTRACT

CONTEXT: Global Leadership Initiative on Malnutrition (GLIM) and Patient-Generated Subjective Global Assessment (PG-SGA) are commonly used nutrition assessment tools, whose performance does not reach a consensus due to different and imperfect reference standards. OBJECTIVE: This study aimed to evaluate and compare the diagnostic accuracy of GLIM and PG-SGA, using a hierarchical Bayesian latent class model, in the absence of a gold standard. DATA SOURCES: A systematic search was undertaken in PubMed, Embase, and Web of Science from inception to October 2022. Diagnostic test studies comparing (1) the GLIM and/or (2) PG-SGA with "semi-gold" standard assessment tools for malnutrition were included. DATA EXTRACTION: Two authors independently extracted data on sensitivity, specificity, and other key characteristics. The methodological quality of each included study was appraised according to the criteria in the Quality Assessment of Diagnostic Accuracy Studies-2. DATA ANALYSIS: A total of 45 studies, comprising 20 876 individuals evaluated for GLIM and 11 575 for PG-SGA, were included. The pooled sensitivity was 0.833 (95% CI 0.744 to 0.896) for GLIM and 0.874 (0.797 to 0.925) for PG-SGA, while the pooled specificity was 0.837 (0.780 to 0.882) for GLIM and 0.778 (0.707 to 0.836) for PG-SGA. GLIM showed slightly better performance than PG-SGA, with a higher diagnostic odds ratio (25.791 vs 24.396). The diagnostic performance of GLIM was most effective in non-cancer patients with an average body mass index (BMI) of <24 kg/m2, followed by non-cancer patients with an average age of ≥60 years. PG-SGA was most powerful in cancer patients with an average age of <60 years, followed by cancer patients with an average BMI of <24 kg/m2. CONCLUSION: Both GLIM and PG-SGA had moderately high diagnostic capabilities. GLIM was most effective in non-cancer patients with a low BMI, while PG-SGA was more applicable in cancer patients. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration No. CRD42022380409.

2.
Sci Rep ; 14(1): 15509, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969683

ABSTRACT

Polyploidization plays an important role in plant evolution and biodiversity. However, intraspecific polyploidy compared to interspecific polyploidy received less attention. Clintonia udensis (Liliaceae) possess diploid (2n = 2x = 14) and autotetraploid (2n = 4x = 28) cytotypes. In the Hualongshan Mountains, the autotetraploids grew on the northern slope, while the diploids grew on the southern slopes. The clonal growth characteristics and clonal architecture were measured and analyzed by field observations and morphological methods. The diversity level and differentiation patterns for two different cytotypes were investigated using SSR markers. The results showed that the clonal growth parameters, such as the bud numbers of each rhizome node and the ratio of rhizome branches in the autotetraploids were higher than those in the diploids. Both the diploids and autotetraploids appeared phalanx clonal architectures with short internodes between ramets. However, the ramets or genets of the diploids had a relatively scattered distribution, while those of the autotetraploids were relatively clumping. The diploids and autotetraploids all allocated more biomass to their vegetative growth. The diploids had a higher allocation to reproductive organs than that of autotetraploids, which indicated that the tetraploids invested more resources in clonal reproduction than diploids. The clone diversity and genetic diversity of the autotetraploids were higher than that of the diploids. Significant genetic differentiation between two different cytotypes was observed (P < 0.01). During establishment and evolution, C. udensis autotetraploids employed more clumping phalanx clonal architecture and exhibited more genetic variation than the diploids.


Subject(s)
Diploidy , Genetic Variation , Tetraploidy , China , Biodiversity , Microsatellite Repeats/genetics
4.
Am J Transl Res ; 16(5): 1834-1844, 2024.
Article in English | MEDLINE | ID: mdl-38883371

ABSTRACT

BACKGROUND: F-box-only protein 22 (FBXO22), an important substrate receptor of the SKP1-Cullin-F-box (SCF) ubiquitin ligases, has been reported to be involved in many biological processes, including tumorigenesis, neurological disorders, cellular senescence, and DNA damage. However, the specific role of FBXO22 during spermatogenesis is poorly understood. METHODS: We produced Fbxo22 conditional knockout (cKO) and global knockout (KO) mice and assessed their sperm masurements using a computer-assisted sperm analysis (CASA) system. Additionally, we conducted histologic staining and immunostaining to examine the impact of Fbxo22 loss on spermatogenesis. RESULTS: Our results revealed that there were no notable differences in semen quality, fertility test results, or histologic findings in Fbxo22-KO and Fbxo22-cKO mice compared to the control group. CONCLUSIONS: Our study demonstrated that Fbxo22 is not significant for spermatogenesis or male fertility in mice. These findings will help researchers avoid redundant efforts and serve as a foundational resource for genetic studies on human fertility.

5.
Physiol Mol Biol Plants ; 30(5): 687-704, 2024 May.
Article in English | MEDLINE | ID: mdl-38846458

ABSTRACT

Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01455-4.

6.
J Phys Chem Lett ; 15(25): 6621-6627, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38888276

ABSTRACT

Ag exhibits high selectivity of electrochemical CO2 reduction (CO2R) toward C1 products, while the hydrogenation involving the concerted proton-electron transfer (CPET) or sequential electron-proton transfer (SEPT) mechanism is still in debate. Toward a better understanding of the Ag-catalyzed electrochemical CO2R, we employed a microkinetic model based on the Marcus electron transfer theory to thoroughly investigate the selectivity of C1 products of electrochemical CO2R over the Ag(111) surface. We found that at an acidic condition of pH = 1.94, formate is the main product when U < -0.94 V via the CPET mechanism, whereas CO becomes the primary product when U > -0.94 V via the SEPT mechanism. Conversely, at an alkaline condition of pH = 13.95, formate is the main product following the SEPT mechanism. Our findings provide novel insights into the influence of external factors (applied potential and pH) on the product selectivity and hydrogenation mechanism of electrochemical CO2R.

7.
Nat Commun ; 15(1): 5232, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897991

ABSTRACT

Dielectric ceramic capacitors with ultrahigh power densities are fundamental to modern electrical devices. Nonetheless, the poor energy density confined to the low breakdown strength is a long-standing bottleneck in developing desirable dielectric materials for practical applications. In this instance, we present a high-entropy tungsten bronze-type relaxor ferroelectric achieved through an equimolar-ratio element design, which realizes a giant recoverable energy density of 11.0 J·cm-3 and a high efficiency of 81.9%. Moreover, the atomic-scale microstructural study confirms that the excellent comprehensive energy storage performance is attributed to the increased atomic-scale compositional heterogeneity from high configuration entropy, which modulates the relaxor features as well as induces lattice distortion, resulting in reduced polarization hysteresis and enhanced breakdown endurance. This study provides evidence that developing high-entropy relaxor ferroelectric material via equimolar-ratio element design is an effective strategy for achieving ultrahigh energy storage characteristics. Our results also uncover the immense potential of tetragonal tungsten bronze-type materials for advanced energy storage applications.

8.
Antibiotics (Basel) ; 13(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927195

ABSTRACT

Mycobacterium abscessus (M. abscessus) is a multidrug-resistant nontuberculous mycobacterium (NTM) that is responsible for a wide spectrum of infections in humans. The lack of effective bactericidal drugs and the formation of biofilm make its clinical treatment very difficult. The FDA-approved drug library containing 3048 marketed and pharmacopeial drugs or compounds was screened at 20 µM against M. abscessus type strain 19977 in 7H9 medium, and 62 hits with potential antimicrobial activity against M. abscessus were identified. Among them, bithionol, a clinically approved antiparasitic agent, showed excellent antibacterial activity and inhibited the growth of three different subtypes of M. abscessus from 0.625 µM to 2.5 µM. We confirmed the bactericidal activity of bithionol by the MBC/MIC ratio being ≤4 and the time-kill curve study and also electron microscopy study. Interestingly, it was found that at 128 µg/mL, bithionol could completely eliminate biofilms after 48h, demonstrating an outstanding antibiofilm capability compared to commonly used antibiotics. Additionally, bithionol could eliminate 99.9% of biofilm bacteria at 64 µg/mL, 99% at 32 µg/mL, and 90% at 16 µg/mL. Therefore, bithionol may be a potential candidate for the treatment of M. abscessus infections due to its significant antimicrobial and antibiofilm activities.

10.
Theranostics ; 14(7): 3014-3028, 2024.
Article in English | MEDLINE | ID: mdl-38773979

ABSTRACT

Background: Periostin (POSTN) is a critical extracellular matrix protein in various tumor microenvironments. However, the function of POSTN in thyroid cancer progression remains largely unknown. Methods: Postn and Rag1 knock-out mice and orthotopic mouse models were used to determine the role of POSTN on papillary thyroid tumor progression. Immunofluorescence, cell co-culture, fluorescence in situ hybridization, chromatin immunoprecipitation assay, recombinant protein and inhibitor treatment were performed to explore the underlying mechanisms of POSTN-promoted papillary thyroid tumor growth. Results: POSTN is up-regulated in papillary thyroid tumors and negatively correlates with the overall survival of patients with thyroid cancer. Cancer-associated fibroblast (CAF)-derived POSTN promotes papillary thyroid tumor growth in vivo and in vitro. POSTN deficiency in CAFs significantly impairs CAF-promoted papillary thyroid tumor growth. POSTN promotes papillary thyroid tumor cell proliferation and IL-4 expression through integrin-FAK-STAT3 signaling. In turn, tumor cell-derived IL-4 induces the activation of CAFs and stimulates POSTN expression by activating STAT6. We reveal the crucial role of CAF-derived POSTN and tumor cell-derived IL-4 in driving the development of papillary thyroid tumors through the POSTN-integrin-FAK-STAT3-IL-4 pathway in tumor cells and IL-4-STAT6-POSTN signaling in CAFs. Conclusion: Our findings underscore the significance of POSTN and IL-4 as critical molecular mediators in the dynamic interplay between CAFs and tumor cells, ultimately supporting the growth of papillary thyroid tumors.


Subject(s)
Cancer-Associated Fibroblasts , Cell Adhesion Molecules , Cell Proliferation , Mice, Knockout , STAT3 Transcription Factor , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Animals , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/genetics , STAT3 Transcription Factor/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Mice , Humans , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Interleukin-4/metabolism , Integrins/metabolism , Focal Adhesion Kinase 1/metabolism , Periostin
11.
J Ethnopharmacol ; 329: 118142, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583730

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia L. (Fabaceae) is a traditional medicinal herb used to treat various diseases, including kidney disease, asthma, psoriasis and vitiligo. AIM OF THE STUDY: To explore the antibacterial activity of Psoralea corylifolia L. and its bioactive components against Mycobacterium abscessus (M. abscessus). MATERIALS AND METHODS: Ultra high performance liquid chromatography was utilized to analyze the bioactive fractions and compounds present in 30%, 60%, and 90% ethanol extracts of Psoralea corylifolia L.. The antibacterial effects of Psoralea corylifolia L. and potential active ingredients were determined by minimum inhibitory concentration (MIC). The bactericidal activity of the active ingredient isobavachalcone was evaluated and then scanning electron microscopy was used to explore the bactericidal mechanism of isobavachalcone. RESULTS: The 90% ethanol extracts of Psoralea corylifolia L. showed significant antibacterial activity against M. abscessus, with an MIC of 156 µg/mL. Isobavachalcone was identified as the bioactive ingredient, and testing of 118 clinical isolates of M. abscessus indicated their MICs ranged from 2 to 16 µg/mL, with an average MIC of 8 µg/mL. Furthermore, the minimum bactericidal concentration/MIC ratio and the time-kill test indicated rapid bactericidal activity of isobavachalcone against M. abscessus. Finally, we found that the bactericidal mechanism of isobavachalcone involved damage to the bacterial cell membrane, causing wrinkled and sunken cell surface and a noticeable reduction in bacterial length. CONCLUSION: Psoralea corylifolia L. ethanol extracts as well as its active component isobavachalcone show promising antimicrobial activity against M. abscessus.


Subject(s)
Anti-Bacterial Agents , Chalcones , Microbial Sensitivity Tests , Mycobacterium abscessus , Plant Extracts , Psoralea , Psoralea/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chalcones/pharmacology , Chalcones/isolation & purification , Mycobacterium abscessus/drug effects
12.
Angew Chem Int Ed Engl ; 63(23): e202404763, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38588210

ABSTRACT

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu-based catalysts. However, the structural changes in Cu-based catalysts during the eCO2RR pose challenges to achieving an in-depth understanding of the structure-activity relationship, thereby limiting catalyst development. Herein, we employ constant-potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu-N-C single-atom catalysts into clusters under eCO2RR conditions. Systematic constant-potential ab initio molecular dynamics simulations revealed that the leaching of Cu-(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu-based catalysts and the origin of their activity toward C2 products during the eCO2RR.

13.
Adv Drug Deliv Rev ; 209: 115323, 2024 06.
Article in English | MEDLINE | ID: mdl-38653402

ABSTRACT

With the aging population on the rise, neurodegenerative disorders have taken center stage as a significant health concern. The blood-brain barrier (BBB) plays an important role to maintain the stability of central nervous system, yet it poses a formidable obstacle to delivering drugs for neurodegenerative disease therapy. Various methods have been devised to confront this challenge, each carrying its own set of limitations. One particularly promising noninvasive approach involves the utilization of focused ultrasound (FUS) combined with contrast agents-microbubbles (MBs) to achieve transient and reversible BBB opening. This review provides a comprehensive exploration of the fundamental mechanisms behind FUS/MBs-mediated BBB opening and spotlights recent breakthroughs in its application for neurodegenerative diseases. Furthermore, it addresses the current challenges and presents future perspectives in this field.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Microbubbles , Neurodegenerative Diseases , Blood-Brain Barrier/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Animals , Contrast Media , Ultrasonic Waves
14.
Adv Sci (Weinh) ; 11(23): e2402516, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582500

ABSTRACT

Cuproptosis is a newly discovered form of programmed cell death significantly depending on the transport efficacy of copper (Cu) ionophores. However, existing Cu ionophores, primarily small molecules with a short blood half-life, face challenges in transporting enough amounts of Cu ions into tumor cells. This work describes the construction of carrier-free nanoparticles (Ce6@Cu NPs), which self-assembled by the coordination of Cu2+ with the sonosensitizer chlorin e6 (Ce6), facilitating sonodynamic-triggered combination of cuproptosis and ferroptosis. Ce6@Cu NPs internalized by U87MG cells induce a sonodynamic effect and glutathione (GSH) depletion capability, promoting lipid peroxidation and eventually inducing ferroptosis. Furthermore, Cu+ concentration in tumor cells significantly increases as Cu2+ reacts with reductive GSH, resulting in the downregulation of ferredoxin-1 and lipoyl synthase. This induces the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, causing proteotoxic stress and irreversible cuproptosis. Ce6@Cu NPs possess a satisfactory ability to penetrate the blood-brain barrier, resulting in significant accumulation in orthotopic U87MG-Luc glioblastoma. The sonodynamic-triggered combination of ferroptosis and cuproptosis in the tumor by Ce6@Cu NPs is evidenced both in vitro and in vivo with minimal side effects. This work represents a promising tumor therapeutic strategy combining ferroptosis and cuproptosis, potentially inspiring further research in developing logical and effective cancer therapies based on cuproptosis.


Subject(s)
Chlorophyllides , Copper , Ferroptosis , Glioblastoma , Porphyrins , Ferroptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/therapy , Animals , Mice , Copper/chemistry , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Line, Tumor , Nanoparticles/chemistry , Disease Models, Animal , Brain Neoplasms/therapy , Brain Neoplasms/metabolism
15.
Nano Lett ; 24(18): 5490-5497, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657179

ABSTRACT

The sodium (Na) metal anode encounters issues such as volume expansion and dendrite growth during cycling. Herein, a novel three-dimensional flexible composite Na metal anode was constructed through the conversion-alloying reaction between Na and ultrafine Sb2S3 nanoparticles encapsulated within the electrospun carbon nanofibers (Sb2S3@CNFs). The formed sodiophilic Na3Sb sites and the high Na+-conducting Na2S matrix, coupled with CNFs, establish a spatially confined "sodiophilic-conductive" network, which effectively reduces the Na nucleation barrier, improves the Na+ diffusion kinetics, and suppresses the volume expansion, thereby inhibiting the Na dendrite growth. Consequently, the Na/Sb2S3@CNFs electrode exhibits a high Coulombic efficiency (99.94%), exceptional lifespan (up to 2800 h) at high current densities (up to 5 mA cm-2), and high areal capacities (up to 5 mAh cm-2) in symmetric cells. The coin-type full cells assembled with a Na3V2(PO4)3/C cathode demonstrate significant enhancement in electrochemical performance. The flexible pouch cell achieves an excellent energy density of 301 Wh kg-1.

16.
Clin Nutr ; 43(5): 1151-1161, 2024 May.
Article in English | MEDLINE | ID: mdl-38603972

ABSTRACT

BACKGROUND & AIMS: The key step of the Global Leadership Initiative on Malnutrition (GLIM) is nutritional risk screening, while the most appropriate screening tool for colorectal cancer (CRC) patients is yet unknown. The GLIM diagnosis relies on weight loss information, and bias or even failure to recall patients' historical weight can cause misestimates of malnutrition. We aimed to compare the suitability of several screening tools in GLIM diagnosis, and establish machine learning (ML) models to predict malnutrition in CRC patients without weight loss information. METHODS: This multicenter cohort study enrolled 4487 CRC patients. The capability of GLIM diagnoses combined with four screening tools in predicting survival probability was compared by Kaplan-Meier curves, and the most accurate one was selected as the malnutrition reference standard. Participants were randomly assigned to a training cohort (n = 3365) and a validation cohort (n = 1122). Several ML approaches were adopted to establish models for predicting malnutrition without weight loss data. We estimated feature importance and reserved the top 30% of variables for retraining simplified models. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess and compare model performance. RESULTS: NRS-2002 was the most suitable screening tool for GLIM diagnosis in CRC patients, with the highest hazard ratio (1.59; 95% CI, 1.43-1.77). A total of 2076 (46.3%) patients were malnourished diagnosed by GLIM combined with NRS-2002. The simplified random forest (RF) model outperformed other models with an AUC of 0.830 (95% CI, 0.805-0.854), and accuracy, sensitivity and specificity were 0.775, 0.835 and 0.742, respectively. We deployed an online application based on the simplified RF model to accurately estimate malnutrition probability in CRC patients without weight loss information (https://zzuwtt1998.shinyapps.io/dynnomapp/). CONCLUSIONS: Nutrition Risk Screening 2002 was the optimal initial nutritional risk screening tool in the GLIM process. The RF model outperformed other models, and an online prediction tool was developed to properly identify patients at high risk of malnutrition.


Subject(s)
Colorectal Neoplasms , Machine Learning , Malnutrition , Nutrition Assessment , Weight Loss , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/complications , Malnutrition/diagnosis , Male , Female , Middle Aged , Aged , Sensitivity and Specificity , Cohort Studies , Risk Assessment/methods
17.
Heliyon ; 10(5): e27073, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463856

ABSTRACT

Purpose: To identify essential oils (EOs) active against non-growing stationary phase Mycobacterium abscessus and multidrug-resistant M. abscessus strains. Methods: The activity of EOs against both stationary and log phase M. abscessus was evaluated by colony forming unit (CFU) assay and minimum inhibitory concentration (MIC) testing. Results: We assessed the activity of 80 EOs against stationary phase M. abscessus and found 12 EOs (Cinnamon, Satureja montana, Palmarosa, Lemon eucalyptus, Honey myrtle, Combava, Health shield, Mandarin, Thyme, Rosewood, Valerian Root and Basil) at 0.5% concentration to be active against both growing and non-growing stationary phase M. abscessus. Among them, Satureja montana essential oil and Palmarosa essential oil could eliminate all stationary phase M. abscessus at 0.125% and Cinnamon essential oil could eliminate stationary phase bacteria at 0.063% after 1-day treatment. Interestingly, these EOs also exhibited promising activity against multidrug-resistant M. abscessus clinical strains. Conclusions: Our study indicates that some EOs display outstanding effectiveness against both drug susceptible M. abscessus and multidrug-resistant M. abscessus isolates. These findings may be significant for the treatment of persistent M. abscessus infections.

18.
RSC Adv ; 14(14): 9602-9608, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516154

ABSTRACT

Dolastatin derivatives possess excellent anticancer activity and have been translated into clinical trials for cancer therapy. Drug delivery systems enable dolastatin derivatives to break the limitation of instability during blood circulation and ineffective cell internalization in the application. Nevertheless, their potential has not been thoroughly established because of the limited loading efficacy and complicated chemical modification. Herein, we rationally propose a rolling circle amplification-based polymer-DNA assembled nanoflower for targeted and efficient delivery of dolastatin-derived drugs to achieve efficient anticancer therapy. The polymer-DNA assembled nanoflower with targeted aptamer conjugate is widely applicable for loading dolastatin-derived drugs with high encapsulation efficiency. The developed monomethyl auristatin E (MMAE) loaded PN@M exhibited increased cellular uptake and enhanced inhibitory effect, especially in multidrug-resistant tumor cells. The results of in vivo anticancer effects indicate that nanoflower as a dolastatin derivatives delivery system holds considerable potential for the treatment of malignant cancer.

19.
Nat Commun ; 15(1): 1929, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431724

ABSTRACT

Single-cell and spatial transcriptome sequencing, two recently optimized transcriptome sequencing methods, are increasingly used to study cancer and related diseases. Cell annotation, particularly for malignant cell annotation, is essential and crucial for in-depth analyses in these studies. However, current algorithms lack accuracy and generalization, making it difficult to consistently and rapidly infer malignant cells from pan-cancer data. To address this issue, we present Cancer-Finder, a domain generalization-based deep-learning algorithm that can rapidly identify malignant cells in single-cell data with an average accuracy of 95.16%. More importantly, by replacing the single-cell training data with spatial transcriptomic datasets, Cancer-Finder can accurately identify malignant spots on spatial slides. Applying Cancer-Finder to 5 clear cell renal cell carcinoma spatial transcriptomic samples, Cancer-Finder demonstrates a good ability to identify malignant spots and identifies a gene signature consisting of 10 genes that are significantly co-localized and enriched at the tumor-normal interface and have a strong correlation with the prognosis of clear cell renal cell carcinoma patients. In conclusion, Cancer-Finder is an efficient and extensible tool for malignant cell annotation.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Gene Expression Profiling , Transcriptome/genetics , Algorithms , Kidney Neoplasms/genetics , Single-Cell Analysis
20.
Cancer Cell Int ; 24(1): 54, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311733

ABSTRACT

BACKGROUND: Ovarian cancer (OC) has the highest mortality rate among all gynecological malignancies. A hypoxic microenvironment is a common feature of solid tumors, including ovarian cancer, and an important driving factor of tumor cell survival and chemo- and radiotherapy resistance. Previous research identified the hypoxia-associated gene angiopoietin-like 4 (ANGPTL4) as both a pro-angiogenic and pro-metastatic factor in tumors. Hence, this work aimed to further elucidate the contribution of ANGPTL4 to OC progression. METHODS: The expression of hypoxia-associated ANGPTL4 in human ovarian cancer was examined by bioinformatics analysis of TCGA and GEO datasets. The CIBERSORT tool was used to analyze the distribution of tumor-infiltrating immune cells in ovarian cancer cases in TCGA. The effect of ANGPTL4 silencing and overexpression on the proliferation and migration of OVCAR3 and A2780 OC cells was studied in vitro, using CCK-8, colony formation, and Transwell assays, and in vivo, through subcutaneous tumorigenesis assays in nude mice. GO enrichment analysis and WGCNA were performed to explore biological processes and genetic networks associated with ANGPTL4. The results obtained were corroborated in OC cells in vitro by western blotting. RESULTS: Screening of hypoxia-associated genes in OC-related TCGA and GEO datasets revealed a significant negative association between ANGPTL4 expression and patient survival. Based on CIBERSORT analysis, differential representation of 14 distinct tumor-infiltrating immune cell types was detected between low- and high-risk patient groups. Silencing of ANGPTL4 inhibited OVCAR3 and A2780 cell proliferation and migration in vitro and reduced the growth rate of xenografted OVCAR3 cells in vivo. Based on results from WGCNA and previous studies, western blot assays in cultured OC cells demonstrated that ANGPTL4 activates the Extracellular signal-related kinases 1 and 2 (ERK1/2) pathway and this results in upregulation of c-Myc, Cyclin D1, and MMP2 expression. Suggesting that the above mechanism mediates the pro-oncogenic actions of ANGPTL4T in OC, the pro-survival effects of ANGPTL4 were largely abolished upon inhibition of ERK1/2 signaling with PD98059. CONCLUSIONS: Our work suggests that the hypoxia-associated gene ANGPTL4 stimulates OC progression through activation of the ERK1/2 pathway. These findings may offer a new prospect for targeted therapies for the treatment of OC.

SELECTION OF CITATIONS
SEARCH DETAIL
...