Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(13): 9486-9499, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38497998

ABSTRACT

Agrichemical losses are a severe threat to the ecological environment. Additionally, some agrichemical compounds contain abundant salt, which increases the instability of formulations, leading to a lower agrichemical utilization and soil hardening. Fortunately, the biological amphiphilic emulsifier sodium deoxycholate alleviates these problems by forming stable Janus core-shell emulsions through salinity-driven interfacial self-assembly. According to the interfacial behavior, dilational rheology, and molecular dynamics simulations, Janus-emulsion molecules are more closely arranged than traditional-emulsion molecules and generate an oil-water interfacial film that transforms into a gel film. In addition, at the same spray volume, the deposition area of the Janus emulsion increased by 37.70% compared with that of the traditional emulsion. Owing to the topology effect and deformation, the Janus emulsion adheres to rice micropapillae, achieving better flush resistance. Meanwhile, based on response of the Janus emulsion to stimulation by carbon dioxide (CO2), the emulsion lost to the soil can form a rigid shell for inhibiting the release of pesticides and metal ions from harming the soil. The pyraclostrobin release rate decreased by 50.89% at 4 h after the Janus emulsion was exposed to CO2. The Chao1 index of the Janus emulsion was increased by 12.49% as compared to coconut oil delivery in soil microbial community. The Janus emulsion ingested by harmful organisms can be effectively absorbed in the intestine to achieve better control effects. This study provides a simple and effective strategy, which turns waste into treasure, by combining metal ions in agrichemicals with natural amphiphilic molecules to prepare stable emulsions for enhancing agrichemical rainfastness and weakening environmental risk.


Subject(s)
Agrochemicals , Salinity , Emulsions/chemistry , Carbon Dioxide , Ions , Soil
2.
J Ethnopharmacol ; 319(Pt 3): 117345, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37926114

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Septic-associated encephalopathy (SAE) is a key manifestation of sepsis. Nevertheless, specific treatment for SAE is still lacking. Catalpol is an active component derived from Rehmanniae Radix, and has been demonstrated to be a potential neuroprotective agent. However, its effect on SAE still needs to be fully explored. AIM: To address the benefits of catalpol on post-sepsis cognitive deterioration and related mechanisms. MATERIALS AND METHODS: Novel object recognition test, temporal order task, histopathology, and immunochemistry were applied to address the benefits of catalpol on LPS-triggered post-sepsis cognitive decline in mice. Xuebijing injection (10 ml/kg) has been utilized as a positive control in the above animal studies. After treatment, the catalpol content in the hippocampus was determined using LC-MS/MS. Finally, the mechanisms of catalpol were further assessed in BV2 and PC12 cells in vitro using Western blot, RT-PCR, flow cytometry, molecular docking tests, thermal shift assay, transmission electron microscopy, and immunofluorescence analysis. RESULTS: Behavior tests showed that catalpol therapy could lessen the cognitive impairment induced by LPS damage. HE, Nissl, immunofluorescence, transmission electron microscopy, and Golgi staining further reflected that catalpol treatment could restore lymphocyte infiltration, blood-brain barrier (BBB) degradation, and the decreasing complexity of dendritic trees. According to LC-MS/MS analysis, catalpol had a 136 ng/mg concentration in the hippocampus. In vitro investigation showed that catalpol could inhibit microglia M1 polarization via blocking NF-κB phosphorylation, translocation and then reducing inflammatory cytokine release in BV2 microglia cells. Brain-derived neurotrophic factor (BDNF) release up-regulation and TrkB pathway activation were observed in the catalpol treatment group in vivo and in vitro. The effect of catalpol on enhancing BDNF expression was inhibited by the specific inhibitor of TrkB (GNF-5837) in PC12 cells. Further molecular docking tests showed that catalpol formed weak hydrophobic bonds with TrkB. Besides, thermal shift assay also reflected that catalpol incubation caused a considerable change in the melting temperature of the TrkB. CONCLUSION: Catalpol alleviates LPS-triggered post-sepsis cognitive impairment by reversing neuroinflammation via blocking the NF-κB pathway, up-regulating neurotrophic factors via the activation of TrkB pathway, and preserving BBB integrity.


Subject(s)
Cognitive Dysfunction , Sepsis , Rats , Animals , Mice , NF-kappa B , Up-Regulation , Brain-Derived Neurotrophic Factor , Lipopolysaccharides/toxicity , Chromatography, Liquid , Molecular Docking Simulation , Neuroinflammatory Diseases , Tandem Mass Spectrometry , Cognitive Dysfunction/drug therapy
3.
ACS Appl Mater Interfaces ; 15(30): 37093-37106, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37488063

ABSTRACT

Various strategies have been developed to improve the applicability of hydrophobic pesticides for better effectiveness in agriculture. However, existing formulations of hydrophobic pesticides still suffer from complicated processing, abused organic solvents, indispensable surfactants, or inescapable ecotoxicity, which strictly limit their applications. Herein, a dynamic covalent bond tailored pesticide (fipronil) amphiphile is constructed to address the above issues, which accomplishes the nanodispersion, full wetting, and precise delivery without organic solvents, surfactants, and materials simultaneously. By introducing a hydrophilic ligand on the hydrophobic fipronil through an imine bond, the cleavable fipronil amphiphile (FPP) exhibits superior water solubility and can even self-assemble into micelles at higher concentrations, which can be directly applied in powder form without organic solvents. Attributed to the suitable hydrophilic/hydrophobic ratio, FPP achieves full wetting and effective deposition on superhydrophobic rice leaves without surfactants. Moreover, benefiting from the unique dynamic nature of the imine bond, FPP maintains good storage stability while sensitively releasing back to fipronil under the humidity and pH trigger, consequently implementing the precise delivery for nontarget Apis cerana and target Chilo suppressalis without materials. To our knowledge, this dynamic covalent bond tailored amphiphile strategy is the first idea that simultaneously takes the dispersibility, wettability, and responsiveness of hydrophobic pesticides into account, providing a possibility to control the entire journey of field application and even promising to be incorporated into the synthesis process, thus paving the way for modern sustainable agriculture.

4.
J Agric Food Chem ; 71(3): 1348-1359, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36629458

ABSTRACT

Glyphosate, one of the most widely used herbicides, plays an important role in controlling weeds and ensuring crop production. While using glyphosate, adjuvants are commonly added to improve its deposition on weeds and control efficacy. However, changes in weed leaf surface characteristics may reduce glyphosate penetration and contribute to evolved glyphosate resistance. Therefore, it is significant to introduce an improved method for regularizing leaf surface characterization and guide adjuvant selection to improve glyphosate efficacy. In this work, surface characteristics of typical weed leaves have been systematically investigated by 3D surface analysis and scanning electron microscopy, finally quantified by apparent surface free energy (ASFE) due to its comprehensive and quantitative evaluation of leaf surfaces. Moreover, the relationship between the weed leaf surface characteristics and the retention of glyphosate on weeds was established, further related to the control efficacy against weeds. To maximize the utilization rate of glyphosate, the types and concentrations of adjuvants should be regulated according to the ASFE of weeds. Our findings not only regularize the surface properties of weed leaves but also reveal their influencing mechanism on the deposition and biological activity of glyphosate, which provide effective guidance for the use of glyphosate.


Subject(s)
Herbicides , Weed Control , Weed Control/methods , Herbicide Resistance , Crops, Agricultural , Herbicides/pharmacology , Plant Weeds , Adjuvants, Immunologic , Plant Leaves , Glyphosate
5.
ACS Appl Mater Interfaces ; 14(49): 55062-55074, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36472305

ABSTRACT

Hydrogels have been extensively used in agriculture to improve crop yields for their excellent properties. However, they are currently used either as pesticide delivery platforms or water retention agents alone; the combination of these two functions into one agricultural hydrogel formulation has never been reported, which is crucial to promote sustainable development in agriculture. Herein, using poly(ß-cyclodextrin) and adamantane-grafted poly(acrylic acid) (PAA-Ada) as the host and guest, respectively, an easy operating, multi-responsive, and safer hydrogel delivery system for insecticides is fabricated by the host-guest interaction between cyclodextrin and adamantane, which can load uniformly dispersed insecticides (fipronil, imidacloprid, and thiamethoxam) up to 60%. Benefiting from the carboxyl and hydroxyl groups on polymer chains, different temperatures (25, 35, and 45 °C) and pH values (5.0, 6.8, and 10.0) change the intermolecular forces within the hydrogel network and then the diffusion of the content, finally resulting in controlled release behaviors. Besides, this platform can rapidly release the insecticides in the presence of amyloglucosidase due to its ring-opening effect on cyclodextrin. Moreover, this platform exhibits high water-retaining capacity toward soil, which can increase the maximum water absorption of nutrient soil and quartz sand by 31.6 and 13.9%, respectively, and slows down the water loss. Compared with commercial formulation, this smart system reduces the acute toxicity to non-target organism earthworms by 52.4% and improves the efficacy against target organism aphids by 47.3%, showing better durability, lower environmental toxicity, and higher efficiency. To our knowledge, this is the first idea that simultaneously adopts the water-retaining capacity and controlled release ability of hydrogels to improve insecticide efficacy. In this regard, this smart hydrogel platform holds great potentials as slow-release granules with water-holding ability for protection against insect pests, providing an alternative platform for the sustainable development in green agriculture.


Subject(s)
Adamantane , Cyclodextrins , Insecticides , Water/chemistry , Delayed-Action Preparations , Soil/chemistry , Hydrogels/chemistry , Pest Control
6.
Bioresour Technol ; 363: 127922, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36087653

ABSTRACT

Fucoxanthin (Fx) has attracted great interest due to its remarkable biological activities such as antioxidant and anti-obesity, and its increasing demands in biopharmaceutical and cosmetic fields. However, its commercial production is limited by low yield and high cost. In this study, we isolated and identified a species of golden algae (Ochromonas sp.) capable of engulfing Microcystis aeruginosa (M. aeruginosa) and accumulating Fx. After 72 h mixotrophic cultivation of Ochromonas sp. and M. aeruginosa, the algal culture changed from green to yellow-brown, and the content of Fx and the daily production rate were up to 11.58 mg g-1, and 1.315 mg L-1 d-1, respectively. The utilization rate of M. aeruginosa was 527.27 fg cell-1. This study will not only provide a new thought to produce Fx in an efficient, low-cost, and sustainable way but an innovative method for the control and treatment of harmful cyanobacterial blooms from eutrophic freshwaters as well.


Subject(s)
Biological Products , Microcystis , Ochromonas , Antioxidants , Xanthophylls
7.
Sci Total Environ ; 851(Pt 1): 158169, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35995160

ABSTRACT

Low pesticide efficiency has caused serious environmental pollution and economic loss, which are closely related to each link in the targeted delivery of pesticides. However, the existing strategies for improving pesticide utilization rate are not comprehensive, and the regulation of foliar absorption and biological activity has been neglected. As surfactants are the most important agricultural synergists, the impact, wetting, adhesion, and leaf retention behaviors of pyraclostrobin (PYR) droplets containing the surfactant Triton X (TX) series on hydrophobic scallion leaf surfaces were studied. The results showed that TX-102 can sufficiently reduce the splash and roll of droplets when they impact inclined leaves, owing to its low dynamic surface tension. Moderate wetting ability and high adhesion also maximizes leaf retention of the TX-102-added PYR solution sprayed on scallion leaves. Furthermore, TX-102 improved the permeation and absorption of PYR in scallion leaves through the synergistic effects of opening the stomata and dissolving the waxy layer. The synergistic bioactivity of TX-102 against pathogenic fungi Alternaria porri and its safety to non-target organism zebrafish have also been demonstrated. Our study provides a more comprehensive theoretical rationale for screening adjuvants to improve the effectiveness and bioavailability of pesticides and reduce the risk of pesticides entering the environment.


Subject(s)
Pesticides , Surface-Active Agents , Animals , Biological Availability , Octoxynol , Pesticides/analysis , Strobilurins , Surface-Active Agents/chemistry , Wettability , Zebrafish
8.
PLoS One ; 17(4): e0266975, 2022.
Article in English | MEDLINE | ID: mdl-35417504

ABSTRACT

Despite the extensive application prospects of piles in cement-treated soil, few studies have explored the ultimate bearing capacity especially in consideration of the spatial variability of cement-treated soil. This study examines the performance of driven piles which were installed inside the cement-treated ground, considering the inherent spatial variability of the cemented soil and the positioning error during piles installation through finite element analyses. The deterministic and random finite element analysis results have shown that the shaft resistance mainly provided the ultimate bearing resistance of piles in cement-treated soil. The spatial variability reduced the global performance of pile installed through a cement-treated soil. The ultimate bearing resistance of the pile inserted in cement-treated soil was controlled by drained condition. Drained ultimate bearing resistance should be used to determine the design working compression load of pile in cement-treated soil.


Subject(s)
Biochemical Phenomena , Soil , Finite Element Analysis , Pressure
9.
J Colloid Interface Sci ; 584: 92-102, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33069032

ABSTRACT

As the applications of supramolecular assemblies are ultimately inscribed in their nanostructures, strategies that can precisely fabricate and regulate supramolecular architectures from small molecules are of great importance. Herein, in this research multiple modulations of supramolecular assembled structures of a natural triterpenoid-tailored bipyridinium amphiphile, 1-[2-(methyl glycyrrhetate)-2-oxoethyl]-[4,4']bipyridinium bromide (MGBP), have been achieved by adjusting solvents or counterions. Depending on the polarity of solvents, MGBP assembled into nanofibers, helices, pentagon and hexagon microsheets, respectively. Moreover, the nanofibers in methanol/water can transform into ribbons, robust fibers and fiber bundles by addition of counterions with different ionic sizes and valences. This work presents a simple and feasible methodology to modulate assembly structures of a natural triterpenoid-based amphiphile, which may expand the application of natural products in supramolecular materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...