Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 6: 92, 2020.
Article in English | MEDLINE | ID: mdl-34567702

ABSTRACT

Microfluidic concentration gradient generators (µ-CGGs) have been utilized to identify optimal drug compositions through antimicrobial susceptibility testing (AST) for the treatment of antimicrobial-resistant (AMR) infections. Conventional µ-CGGs fabricated via photolithography-based micromachining processes, however, are fundamentally limited to two-dimensional fluidic routing, such that only two distinct antimicrobial drugs can be tested at once. This work addresses this limitation by employing Multijet-3D-printed microchannel networks capable of fluidic routing in three dimensions to generate symmetric multidrug concentration gradients. The three-fluid gradient generation characteristics of the fabricated 3D µ-CGG prototype were quantified through both theoretical simulations and experimental validations. Furthermore, the antimicrobial effects of three highly clinically relevant antibiotic drugs, tetracycline, ciprofloxacin, and amikacin, were evaluated via experimental single-antibiotic minimum inhibitory concentration (MIC) and pairwise and three-way antibiotic combination drug screening (CDS) studies against model antibiotic-resistant Escherichia coli bacteria. As such, this 3D µ-CGG platform has great potential to enable expedited combination AST screening for various biomedical and diagnostic applications.

2.
Polymers (Basel) ; 9(6)2017 May 26.
Article in English | MEDLINE | ID: mdl-30970868

ABSTRACT

The aim of this study was to fabricate biodegradable poly-l-lactic acid (PLLA) bone screws containing iron oxide (Fe3O4) nanoparticles, which are radiopaque and 3D-printable. The PLLA composites were fabricated by loading 20%, 30%, and 40% Fe3O4 nanoparticles into the PLLA. The physical properties, including elastic modulus, thermal properties, and biocompatibility of the composites were tested. The 20% nano-Fe3O4/PLLA composite was used as the material for fabricating the 3D-printed bone screws. The mechanical performance of the nano-Fe3O4/PLLA bone screws was evaluated by anti-bending and anti-torque strength tests. The tissue response and radiopacity of the nano-Fe3O4/PLLA bone screws were assessed by histologic and CT imaging studies using an animal model. The addition of nano-Fe3O4 increased the crystallization of the PLLA composites. Furthermore, the 20% nano-Fe3O4/PLLA composite exhibited the highest thermal stability compared to the other Fe3O4 proportions. The 3D-printed bone screws using the 20% nano-Fe3O4/PLLA composite provided excellent local tissue response. In addition, the radiopacity of the 20% nano-Fe3O4/PLLA screw was significantly better compared with the neat PLLA screw.

3.
PLoS One ; 10(10): e0140354, 2015.
Article in English | MEDLINE | ID: mdl-26466309

ABSTRACT

Nanosized iron oxide particles exhibit osteogenic and radiopaque properties. Thus, iron oxide (Fe3O4) nanoparticles were incorporated into a biodegradable polymer (poly-L-lactic acid, PLLA) to fabricate a composite bone screw. This multifunctional, 3D printable bone screw was detectable on X-ray examination. In this study, mechanical tests including three-point bending and ultimate tensile strength were conducted to evaluate the optimal ratio of iron oxide nanoparticles in the PLLA composite. Both injection molding and 3D printing techniques were used to fabricate the PLLA bone screws with and without the iron oxide nanoparticles. The fabricated screws were implanted into the femoral condyles of New Zealand White rabbits. Bone blocks containing the PLLA screws were resected 2 and 4 weeks after surgery. Histologic examination of the surrounding bone and the radiopacity of the iron-oxide-containing PLLA screws were evaluated. Our results indicated that addition of iron oxide nanoparticles at 30% significantly decreased the ultimate tensile stress properties of the PLLA screws. The screws with 20% iron oxide exhibited strong radiopacity compared to the screws fabricated without the iron oxide nanoparticles. Four weeks after surgery, the average bone volume of the iron oxide PLLA composite screws was significantly greater than that of PLLA screws without iron oxide. These findings suggested that biodegradable and X-ray detectable PLLA bone screws can be produced by incorporation of 20% iron oxide nanoparticles. Furthermore, these screws had significantly greater osteogenic capability than the PLLA screws without iron oxide.


Subject(s)
Bone Screws/adverse effects , Lactic Acid/chemistry , Polymers/chemistry , Animals , Femur/diagnostic imaging , Femur/surgery , Ferric Compounds/chemistry , Nanoparticles/adverse effects , Nanoparticles/chemistry , Osteogenesis , Polyesters , Printing, Three-Dimensional , Rabbits , Radiography , Tensile Strength , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...